RAVE / utils /preprocesser_utils.py
ozgurkara's picture
first commit
eb9a9b4
import cv2
import yaml
import numpy as np
from annotator.lineart import LineartDetector
from annotator.zoe import ZoeDetector
from annotator.manga_line import MangaLineExtration
from annotator.lineart_anime import LineartAnimeDetector
from annotator.hed import apply_hed
from annotator.canny import apply_canny
from annotator.pidinet import apply_pidinet
from annotator.leres import apply_leres
from annotator.midas import apply_midas
def yaml_load(path):
with open(path, 'r') as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
def yaml_dump(path, data):
with open(path, 'w') as outfile:
yaml.dump(data, outfile, default_flow_style=False)
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
def resize_image_with_pad(input_image, resolution, skip_hwc3=False):
if skip_hwc3:
img = input_image
else:
img = HWC3(input_image)
H_raw, W_raw, _ = img.shape
k = float(resolution) / float(min(H_raw, W_raw))
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
def remove_pad(x):
return safer_memory(x[:H_target, :W_target])
return safer_memory(img_padded), remove_pad
def lineart_standard(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
x = img.astype(np.float32)
g = cv2.GaussianBlur(x, (0, 0), 6.0)
intensity = np.min(g - x, axis=2).clip(0, 255)
intensity /= max(16, np.median(intensity[intensity > 8]))
intensity *= 127
result = intensity.clip(0, 255).astype(np.uint8)
return remove_pad(result), True
def lineart(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_lineart = LineartDetector('sk_model.pth')
# applied auto inversion
result = 255 - model_lineart(img)
return remove_pad(result), True
def lineart_coarse(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_lineart_coarse = LineartDetector('sk_model2.pth')
# applied auto inversion
result = 255 - model_lineart_coarse(img)
return remove_pad(result), True
def lineart_anime(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_lineart_anime = LineartAnimeDetector()
# applied auto inversion
result = 255 - model_lineart_anime(img)
return remove_pad(result), True
def lineart_anime_denoise(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_manga_line = MangaLineExtration()
# applied auto inversion
result = model_manga_line(img)
return remove_pad(result), True
def canny(img, res=512, thr_a=100, thr_b=200, **kwargs):
l, h = thr_a, thr_b
img, remove_pad = resize_image_with_pad(img, res)
model_canny = apply_canny
result = model_canny(img, l, h)
return remove_pad(result), True
def hed(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_hed = apply_hed
result = model_hed(img)
return remove_pad(result), True
def hed_safe(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_hed = apply_hed
result = model_hed(img, is_safe=True)
return remove_pad(result), True
def midas(img, res=512, a=np.pi * 2.0, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_midas = apply_midas
result, _ = model_midas(img, a)
return remove_pad(result), True
def leres(img, res=512, thr_a=0, thr_b=0, boost=False, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_leres = apply_leres
result = model_leres(img, thr_a, thr_b, boost=boost)
return remove_pad(result), True
def lerespp(img, res=512, thr_a=0, thr_b=0, boost=True, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_leres = apply_leres
result = model_leres(img, thr_a, thr_b, boost=boost)
return remove_pad(result), True
def pidinet(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_pidinet = apply_pidinet
result = model_pidinet(img)
return remove_pad(result), True
def pidinet_ts(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_pidinet = apply_pidinet
result = model_pidinet(img, apply_fliter=True)
return remove_pad(result), True
def pidinet_safe(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_pidinet = apply_pidinet
result = model_pidinet(img, is_safe=True)
return remove_pad(result), True
def zoe_depth(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_zoe_depth = ZoeDetector()
result = model_zoe_depth(img)
return remove_pad(result), True
preprocessors_dict = {
'lineart_realistic': lineart,
'lineart_coarse': lineart_coarse,
'lineart_standard': lineart_standard,
'lineart_anime': lineart_anime,
'lineart_anime_denoise': lineart_anime_denoise,
'softedge_hed': hed,
'softedge_hedsafe': hed_safe,
'softedge_pidinet': pidinet,
'softedge_pidsafe': pidinet_safe,
'canny': canny,
'depth_leres': leres,
'depth_leres++': lerespp,
'depth_midas': midas,
'depth_zoe': zoe_depth,
}
def pixel_perfect_process(input_image, p_name):
raw_H, raw_W, _ = input_image.shape
preprocessor_resolution = raw_H
detected_map, _ = preprocessors_dict[p_name](input_image, res=preprocessor_resolution)
return detected_map