Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces # [uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline | |
import torch | |
from tags import participant_tags, tribe_tags, skin_tone_tags, body_type_tags, tattoo_tags, piercing_tags, expression_tags, eye_tags, hair_style_tags, position_tags, fetish_tags, location_tags, camera_tags, atmosphere_tags | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace with your desired model | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# [uncomment to use ZeroGPU] | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, | |
selected_participant_tags, selected_tribe_tags, selected_skin_tone_tags, selected_body_type_tags, | |
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags, | |
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags, | |
selected_camera_tags, selected_atmosphere_tags, active_tab, progress=gr.Progress(track_tqdm=True)): | |
if active_tab == "Prompt Input": | |
# Use the user-provided prompt | |
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}' | |
else: | |
# Use tags from the "Tag Selection" tab | |
selected_tags = ( | |
[participant_tags[tag] for tag in selected_participant_tags] + | |
[tribe_tags[tag] for tag in selected_tribe_tags] + | |
[skin_tone_tags[tag] for tag in selected_skin_tone_tags] + | |
[body_type_tags[tag] for tag in selected_body_type_tags] + | |
[tattoo_tags[tag] for tag in selected_tattoo_tags] + | |
[piercing_tags[tag] for tag in selected_piercing_tags] + | |
[expression_tags[tag] for tag in selected_expression_tags] + | |
[eye_tags[tag] for tag in selected_eye_tags] + | |
[hair_style_tags[tag] for tag in selected_hair_style_tags] + | |
[position_tags[tag] for tag in selected_position_tags] + | |
[fetish_tags[tag] for tag in selected_fetish_tags] + | |
[location_tags[tag] for tag in selected_location_tags] + | |
[camera_tags[tag] for tag in selected_camera_tags] + | |
[atmosphere_tags[tag] for tag in selected_atmosphere_tags] | |
) | |
tags_text = ', '.join(selected_tags) | |
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}' | |
# Concatenate user-provided negative prompt with additional restrictions | |
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark" | |
full_negative_prompt = f"{additional_negatives}, {negative_prompt}" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# Generate the image with the final prompts | |
image = pipe( | |
prompt=final_prompt, | |
negative_prompt=full_negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
# Return image, seed, and the used prompts | |
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}" | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1280px; | |
} | |
#left-column { | |
width: 50%; | |
display: inline-block; | |
padding-right: 20px; | |
padding-left: 20px; | |
vertical-align: top; | |
} | |
#right-column { | |
width: 50%; | |
display: inline-block; | |
vertical-align: top; | |
padding-left: 20px; | |
margin-top: 53px; | |
} | |
#left-column > * { | |
margin-bottom: 20px; | |
} | |
#run-button { | |
width: 100%; | |
margin-top: 10px; | |
display: block; | |
} | |
#prompt-info { | |
margin-bottom: 20px; | |
} | |
#result { | |
margin-bottom: 20px; | |
} | |
.gradio-tabs > .tab-item { | |
margin-bottom: 20px; | |
} | |
#prompt { | |
margin-bottom: 20px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(elem_id="left-column"): | |
gr.Markdown("""# Rainbow Media X""") | |
# Display result image at the top | |
result = gr.Image(label="Result", show_label=False, elem_id="result") | |
# Add a textbox to display the prompts used for generation | |
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False, elem_id="prompt-info") | |
# Advanced Settings and Run Button | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=35, | |
) | |
# Full-width "Run" button | |
run_button = gr.Button("Run", elem_id="run-button") | |
with gr.Column(elem_id="right-column"): | |
# Removed the Prompt / Tag Input title here | |
# State to track active tab | |
active_tab = gr.State("Prompt Input") | |
# Tabbed interface to select either Prompt or Tags | |
with gr.Tabs() as tabs: | |
with gr.TabItem("Prompt Input") as prompt_tab: | |
prompt = gr.Textbox( | |
label="Prompt", | |
show_label=False, | |
lines=3, | |
placeholder="Enter your prompt", | |
container=False, | |
elem_id="prompt" | |
) | |
prompt_tab.select(lambda: "Prompt Input", inputs=None, outputs=active_tab) | |
with gr.TabItem("Tag Selection") as tag_tab: | |
# Tag selection checkboxes for each tag group | |
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags") | |
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags") | |
selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags") | |
selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags") | |
selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags") | |
selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags") | |
selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags") | |
selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags") | |
selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags") | |
selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags") | |
selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags") | |
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags") | |
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags") | |
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags") | |
tag_tab.select(lambda: "Tag Selection", inputs=None, outputs=active_tab) | |
run_button.click( | |
infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, | |
selected_participant_tags, selected_tribe_tags, selected_skin_tone_tags, selected_body_type_tags, | |
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags, | |
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags, | |
selected_camera_tags, selected_atmosphere_tags, active_tab], | |
outputs=[result, seed, prompt_info] | |
) | |
demo.queue().launch() |