Spaces:
Sleeping
Sleeping
import json | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# one head of self-attention using scaled-dot product attention | |
class Head(nn.Module): | |
def __init__(self, n_embed, head_size, context_size, dropout=0.1): | |
super().__init__() | |
self.key = nn.Linear(n_embed, head_size, bias=False) | |
self.query = nn.Linear(n_embed, head_size, bias=False) | |
self.value = nn.Linear(n_embed, head_size, bias=False) | |
self.register_buffer('tril', torch.tril(torch.ones(context_size, context_size))) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
B,T,C = x.shape | |
k = self.key(x) | |
q = self.query(x) | |
v = self.value(x) | |
tril = torch.tril(torch.ones(T, T, device=device)) | |
wei = q @ k.transpose(-2, -1) * (C**-0.5) | |
wei = wei.masked_fill(tril == 0, float('-inf')) | |
wei = F.softmax(wei, dim=-1) | |
wei = self.dropout(wei) | |
out = wei @ v | |
return out | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, n_embed, num_heads, context_size, head_size, dropout): | |
super().__init__() | |
self.heads = nn.ModuleList([ | |
Head(n_embed, head_size, context_size) | |
for _ in range(num_heads) | |
]) | |
self.projection = nn.Linear(n_embed, n_embed) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
out = torch.cat([h(x) for h in self.heads], dim=-1) | |
out = self.projection(out) | |
return self.dropout(out) | |
# simple feed forward layer | |
class FeedForward(nn.Module): | |
def __init__(self, n_embeds, dropout): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embeds, 4 * n_embeds), | |
nn.ReLU(), | |
# projection layer | |
nn.Linear(4 * n_embeds, n_embeds), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
# Transformer block | |
class Block(nn.Module): | |
def __init__(self, n_embeds, n_head, context_size, dropout): | |
super().__init__() | |
head_size = n_embeds // n_head | |
self.sa = MultiHeadAttention(n_embeds, n_head, context_size, head_size, dropout) | |
self.ffwd = FeedForward(n_embeds, dropout) | |
self.ln1 = nn.LayerNorm(n_embeds) | |
self.ln2 = nn.LayerNorm(n_embeds) | |
def forward(self, x): | |
x = x + self.sa(self.ln1(x)) | |
x = x + self.ffwd(self.ln2(x)) | |
return x | |
# simple bigram model | |
class DecoderTransformer(nn.Module): | |
def __init__(self, vocab_size, n_embed, context_size, n_layer, n_head, dropout): | |
super().__init__() | |
self.token_embedding_table = nn.Embedding(vocab_size, n_embed) | |
self.position_embedding_table = nn.Embedding(context_size, n_embed) | |
self.blocks = nn.Sequential( | |
*[Block( | |
n_embeds=n_embed, | |
n_head=n_head, | |
context_size=context_size, | |
dropout=dropout | |
) for _ in range(n_layer)] | |
) | |
self.ln_f = nn.LayerNorm(n_embed) | |
self.lm_head = nn.Linear(n_embed, vocab_size) | |
def forward(self, idx, targets=None): | |
B, T = idx.shape | |
# idx and targets of size (B,T) | |
token_embeds = self.token_embedding_table(idx) # yields (B, T, C) | |
pos_embeds = self.position_embedding_table(torch.arange(T, device=device)) | |
x = token_embeds + pos_embeds | |
x = self.ln_f(self.blocks(x)) | |
logits = self.lm_head(x) | |
if targets is None: | |
return logits, None | |
# reshape elements | |
B, T, C = logits.shape | |
logits = logits.view(B*T,C) | |
targets = targets.view(B*T) | |
# compute loss (CE) | |
loss = F.cross_entropy(logits, targets) | |
return logits, loss | |
def generate(self, idx, max_new_tokens=50, context_size=None, temperature=1.0): | |
if context_size is None: | |
context_size = int(self.position_embedding_table.weight.shape[0]) | |
print(context_size) | |
for _ in range(max_new_tokens): | |
idx_cond = idx[:, -context_size:] | |
logits, loss = self(idx_cond) | |
logits = logits[:,-1,:] / temperature | |
probs = F.softmax(logits, dim=-1) | |
idx_next = torch.multinomial(probs, num_samples=1) | |
idx = torch.cat([idx, idx_next], dim=1) | |
return idx | |
class Tokenizer: | |
def __init__(self, vocab): | |
self.vocab = vocab | |
self.stoi = {ch: idx for idx, ch in enumerate(vocab)} | |
self.itos = {idx: ch for idx, ch in enumerate(vocab)} | |
def encode(self, s): | |
return [self.stoi[c] for c in s] | |
def decode(self, i): | |
return ''.join([self.itos[x] for x in i]) | |
def from_pretrained(cls, path): | |
with open(path, 'r') as f: | |
vocab = json.load(f) | |
return cls(vocab) | |
def save_pretrained(self, path): | |
with open(path, 'w') as f: | |
json.dump(self.vocab, f) | |