File size: 17,553 Bytes
d0e0e62
 
 
 
 
 
 
 
 
 
 
 
 
ec64fd3
d0e0e62
 
17b7e45
d0e0e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec64fd3
d0e0e62
 
 
 
 
d1016a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec64fd3
d1016a3
 
 
 
 
17b7e45
 
d1016a3
17b7e45
 
 
ec64fd3
d1016a3
d0e0e62
 
ec64fd3
7e13339
ec64fd3
7e13339
 
ec64fd3
7e13339
d0e0e62
 
17b7e45
 
d0e0e62
 
 
 
 
 
 
 
 
7e13339
 
 
ec64fd3
d0e0e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec64fd3
d0e0e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d768dd3
7e13339
 
 
d0e0e62
 
 
 
 
 
d768dd3
7e13339
 
d768dd3
d0e0e62
 
 
d768dd3
7e13339
 
d768dd3
d0e0e62
 
 
 
d768dd3
 
7e13339
 
d0e0e62
ec64fd3
d0e0e62
7e13339
d0e0e62
 
 
 
 
ec64fd3
 
 
 
600e7d4
 
d0e0e62
 
 
ec64fd3
07d2543
d0e0e62
 
 
 
 
ec64fd3
d0e0e62
ec64fd3
 
 
7e13339
d0e0e62
 
ec64fd3
d768dd3
d0e0e62
ec64fd3
d768dd3
d0e0e62
 
ec64fd3
 
 
 
 
 
 
 
 
 
 
 
d0e0e62
ec64fd3
 
 
d0e0e62
 
 
 
d768dd3
d0e0e62
 
 
 
7e13339
d0e0e62
 
 
 
 
7e13339
d0e0e62
 
 
 
600e7d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import random
import pandas as pd
import numpy as np
from datasets import concatenate_datasets
from operator import itemgetter
import collections

# download datasets
from datasets import load_dataset

dataset_small = load_dataset("pierreguillou/DocLayNet-small")
dataset_base = load_dataset("pierreguillou/DocLayNet-base")

id2label = {idx:label for idx,label in enumerate(dataset_small["train"].features["categories"].feature.names)}
label2id = {label:idx for idx,label in id2label.items()}
labels = [label for idx, label in id2label.items()]

# need to change the coordinates format
def convert_box(box):
    x, y, w, h = tuple(box) # the row comes in (left, top, width, height) format
    actual_box = [x, y, x+w, y+h] # we turn it into (left, top, left+widght, top+height) to get the actual box 
    return actual_box

# get back original size
def original_box(box, original_width, original_height, coco_width, coco_height):
    return [
        int(original_width * (box[0] / coco_width)),
        int(original_height * (box[1] / coco_height)),
        int(original_width * (box[2] / coco_width)),
        int(original_height* (box[3] / coco_height)),
    ]

# function to sort bounding boxes
def get_sorted_boxes(bboxes):

  # sort by y from page top to bottom 
  bboxes = sorted(bboxes, key=itemgetter(1), reverse=False)
  y_list = [bbox[1] for bbox in bboxes]

  # sort by x from page left to right when boxes with same y
  if len(list(set(y_list))) != len(y_list):
    y_list_duplicates_indexes = dict()
    y_list_duplicates = [item for item, count in collections.Counter(y_list).items() if count > 1]
    for item in y_list_duplicates:
      y_list_duplicates_indexes[item] = [i for i, e in enumerate(y_list) if e == item]
      bbox_list_y_duplicates = sorted(np.array(bboxes)[y_list_duplicates_indexes[item]].tolist(), key=itemgetter(0), reverse=False)
      np_array_bboxes = np.array(bboxes)
      np_array_bboxes[y_list_duplicates_indexes[item]] = np.array(bbox_list_y_duplicates)
      bboxes = np_array_bboxes.tolist()

  return bboxes

# categories colors
label2color = {
    'Caption': 'brown',
    'Footnote': 'orange',
    'Formula': 'gray',
    'List-item': 'yellow',
    'Page-footer': 'red',
    'Page-header': 'red',
    'Picture': 'violet',
    'Section-header': 'orange',
    'Table': 'green',
    'Text': 'blue',
    'Title': 'pink'
    }

# image witout content
examples_dir = 'samples/'
images_wo_content = examples_dir + "wo_content.png"

df_paragraphs_wo_content, df_lines_wo_content = pd.DataFrame(), pd.DataFrame()

df_paragraphs_wo_content["paragraphs"] = [0]
df_paragraphs_wo_content["categories"] = ["no content"]
df_paragraphs_wo_content["texts"] = ["no content"]
df_paragraphs_wo_content["bounding boxes"] = ["no content"]

df_lines_wo_content["lines"] = [0]
df_lines_wo_content["categories"] = ["no content"]
df_lines_wo_content["texts"] = ["no content"]
df_lines_wo_content["bounding boxes"] = ["no content"]

# lists
font = ImageFont.load_default()

dataset_names = ["small", "base"]
splits = ["all", "train", "validation", "test"]
domains = ["all", "Financial Reports", "Manuals", "Scientific Articles", "Laws & Regulations", "Patents", "Government Tenders"]
domains_names = [domain_name.lower().replace(" ", "_").replace("&", "and") for domain_name in domains]
categories = labels + ["all"]

# function to get a rendom image and all data from DocLayNet
def generate_annotated_image(dataset_name, split, domain, category):

  # error message
  msg_error = ""

  # get dataset
  if dataset_name == "small": example = dataset_small
  else: example = dataset_base

  # get split
  if split == "all":
    example = concatenate_datasets([example["train"], example["validation"], example["test"]])
  else:
    example = example[split]

  # get domain
  domain_name = domains_names[domains.index(domain)]
  if domain_name != "all":
    example = example.filter(lambda example: example["doc_category"] == domain_name)
    if len(example) == 0:
      msg_error = f'There is no image with at least one labeled bounding box that matches your settings (dataset: "DocLayNet {dataset_name}" / domain: "{domain}" /  split: "{split}").'
      example = dict()

  # get category
  idx_list = list()
  if category != "all":
    for idx, categories_list in enumerate(example["categories"]):
      if int(label2id[category]) in categories_list:
        idx_list.append(idx)
    if len(idx_list) > 0:
      example = example.select(idx_list)
    else:
      msg_error = f'There is no image with at least one labeled bounding box that matches your settings (dataset: "DocLayNet {dataset_name}" / split: "{split}" / domain: "{domain}" / category: "{category}").'
      example = dict()

  if len(msg_error) > 0:
    # save image files
    Image.open(images_wo_content).save("wo_content.png")
    # save csv files
    df_paragraphs_wo_content.to_csv("paragraphs_wo_content.csv", encoding="utf-8", index=False)
    df_lines_wo_content.to_csv("lines_wo_content.csv", encoding="utf-8", index=False)

    return msg_error, "wo_content.png", images_wo_content, images_wo_content, "wo_content.png", "wo_content.png", df_paragraphs_wo_content, df_lines_wo_content, gr.File.update(value="paragraphs_wo_content.csv", visible=False), gr.File.update(value="lines_wo_content.csv", visible=False)
  else:
    # get random image & PDF data
    index = random.randint(0, len(example))
    image = example[index]["image"] # original image
    coco_width, coco_height = example[index]["coco_width"], example[index]["coco_height"]
    original_width, original_height = example[index]["original_width"], example[index]["original_height"]
    original_filename = example[index]["original_filename"]
    page_no = example[index]["page_no"]
    num_pages = example[index]["num_pages"]

    # resize image to original
    image = image.resize((original_width, original_height))

    # get image of PDF without bounding boxes
    img_file = original_filename.replace(".pdf", ".png")
    image.save(img_file)

    # get corresponding annotations
    texts = example[index]["texts"]
    bboxes_block = example[index]["bboxes_block"]
    bboxes_line = example[index]["bboxes_line"]
    categories = example[index]["categories"]
    domain = example[index]["doc_category"]

    # convert boxes to original
    original_bboxes_block = [original_box(convert_box(box), original_width, original_height, coco_width, coco_height) for box in bboxes_block]
    original_bboxes_line = [original_box(convert_box(box), original_width, original_height, coco_width, coco_height) for box in bboxes_line]
    original_bboxes = [original_bboxes_block, original_bboxes_line]

    ##### block boxes #####

    # get list of unique block boxes
    original_blocks = dict()
    original_bboxes_block_list = list()
    original_bbox_block_prec = list()
    for count_block, original_bbox_block in enumerate(original_bboxes_block):
      if original_bbox_block != original_bbox_block_prec:
        original_bbox_block_indexes = [i for i, original_bbox in enumerate(original_bboxes_block) if original_bbox == original_bbox_block]
        original_blocks[count_block] = original_bbox_block_indexes
        original_bboxes_block_list.append(original_bbox_block)
      original_bbox_block_prec = original_bbox_block

    # get list of categories and texts by unique block boxes
    category_block_list, text_block_list = list(), list()
    for original_bbox_block in original_bboxes_block_list:
      count_block = original_bboxes_block.index(original_bbox_block)
      original_bbox_block_indexes = original_blocks[count_block]
      category_block = categories[original_bbox_block_indexes[0]]
      category_block_list.append(category_block)
      if id2label[category_block] == "Text" or id2label[category_block] == "Caption" or id2label[category_block] == "Footnote":
        text_block = ' '.join(np.array(texts)[original_bbox_block_indexes].tolist())
      elif id2label[category_block] == "Section-header" or id2label[category_block] == "Title" or id2label[category_block] == "Picture" or id2label[category_block] == "Formula" or id2label[category_block] == "List-item" or id2label[category_block] == "Table" or id2label[category_block] == "Page-header" or id2label[category_block] == "Page-footer":
        text_block = '\n'.join(np.array(texts)[original_bbox_block_indexes].tolist())
      text_block_list.append(text_block)

    # sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
    sorted_original_bboxes_block_list = get_sorted_boxes(original_bboxes_block_list)
    sorted_original_bboxes_block_list_indexes = [original_bboxes_block_list.index(item) for item in sorted_original_bboxes_block_list]
    sorted_category_block_list = np.array(category_block_list)[sorted_original_bboxes_block_list_indexes].tolist()
    sorted_text_block_list = np.array(text_block_list)[sorted_original_bboxes_block_list_indexes].tolist()

    ##### line boxes ####

    # sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
    original_bboxes_line_list = original_bboxes_line
    category_line_list = categories
    text_line_list = texts
    sorted_original_bboxes_line_list = get_sorted_boxes(original_bboxes_line_list)
    sorted_original_bboxes_line_list_indexes = [original_bboxes_line_list.index(item) for item in sorted_original_bboxes_line_list]
    sorted_category_line_list = np.array(category_line_list)[sorted_original_bboxes_line_list_indexes].tolist()
    sorted_text_line_list = np.array(text_line_list)[sorted_original_bboxes_line_list_indexes].tolist()
    
    # setup images & PDF data
    columns = 2
    images = [image.copy(), image.copy()]
    num_imgs = len(images)

    imgs, df_paragraphs, df_lines = dict(), pd.DataFrame(), pd.DataFrame()
    for i, img in enumerate(images):
        
        draw = ImageDraw.Draw(img)
        
        for box, label_idx, text in zip(original_bboxes[i], categories, texts):
            label = id2label[label_idx]
            color = label2color[label]
            draw.rectangle(box, outline=color)
            text = text.encode('latin-1', 'replace').decode('latin-1') # https://stackoverflow.com/questions/56761449/unicodeencodeerror-latin-1-codec-cant-encode-character-u2013-writing-to
            draw.text((box[0] + 10, box[1] - 10), text=label, fill=color, font=font)

        if i == 0: 
          imgs["paragraphs"] = img

          # save
          img_paragraphs = "img_paragraphs_" + original_filename.replace(".pdf", ".png")
          img.save(img_paragraphs)
        
          df_paragraphs["paragraphs"] = list(range(len(sorted_original_bboxes_block_list)))
          df_paragraphs["categories"] = [id2label[label_idx] for label_idx in sorted_category_block_list]
          df_paragraphs["texts"] = sorted_text_block_list
          df_paragraphs["bounding boxes"] = [str(bbox) for bbox in sorted_original_bboxes_block_list]

          # save 
          csv_paragraphs = "csv_paragraphs_" + original_filename.replace(".pdf", ".csv")
          df_paragraphs.to_csv(csv_paragraphs, encoding="utf-8", index=False)

        else: 
          imgs["lines"] = img

          # save 
          img_lines = "img_lines_" + original_filename.replace(".pdf", ".png")
          img.save(img_lines)

          df_lines["lines"] = list(range(len(sorted_original_bboxes_line_list)))
          df_lines["categories"] = [id2label[label_idx] for label_idx in sorted_category_line_list]
          df_lines["texts"] = sorted_text_line_list
          df_lines["bounding boxes"] = [str(bbox) for bbox in sorted_original_bboxes_line_list]
          
          # save 
          csv_lines = "csv_lines_" + original_filename.replace(".pdf", ".csv")
          df_lines.to_csv(csv_lines, encoding="utf-8", index=False)

    msg = f'The page {page_no} of the PDF "{original_filename}" (domain: "{domain}") matches your settings.'

    return msg, img_file, imgs["paragraphs"], imgs["lines"], img_paragraphs, img_lines, df_paragraphs, df_lines, gr.File.update(value=csv_paragraphs, visible=True), gr.File.update(value=csv_lines, visible=True)

# gradio APP
with gr.Blocks(title="DocLayNet image viewer", css=".gradio-container") as demo:
    gr.HTML("""
    <div style="font-family:'Times New Roman', 'Serif'; font-size:26pt; font-weight:bold; text-align:center;"><h1>DocLayNet image viewer</h1></div>
    <div style="margin-top: 40px"><p>(01/29/2023) This APP is an image viewer of the DocLayNet dataset and a data extraction tool.</p></div>
    <div><p>It uses the datasets <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/datasets/pierreguillou/DocLayNet-small" target="_blank">DocLayNet small</a> and <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/datasets/pierreguillou/DocLayNet-base" target="_blank">DocLayNet base</a> (you can also run this APP in Google Colab by running this <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://github.com/piegu/language-models/blob/master/DocLayNet_image_viewer_APP.ipynb" target="_blank">notebook</a>).</p></div>
    <div><p>Make your settings and the output will show 2 images of a randomly selected PDF with labeled bounding boxes, one of paragraphs and the other of lines, and their corresponding tables of texts with their labels.</p></div>
    <div><p>For example, if you select the domain "laws_and_regulations" and the category "Caption", you will get a random PDF that corresponds to these settings (ie, it will have at least one bounding box labeled with "Caption" in the PDF).</p></div>
    <div><p><b>WARNING</b>: if the app crashes or runs without providing a result, refresh the page (<a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/DocLayNet-image-viewer">DocLayNet image viewer</a>) and run a search again. If the same problem occurs again, prefer the DocLayNet small. Thanks.</p></div>
    <div style="margin-top: 20px"><p>More information about the DocLayNet datasets and this APP in the following blog post: <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-processing-of-doclaynet-dataset-to-be-used-by-layout-models-of-the-hugging-face-hub-308d8bd81cdb" target="_blank">(01/27/2023) Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)</a></div> 
    """)
    with gr.Row():
        with gr.Column():
            dataset_name_gr = gr.Radio(dataset_names, value="small", label="DocLayNet dataset")
        with gr.Column():
            split_gr = gr.Dropdown(splits, value="all", label="Split")
        with gr.Column():
            domain_gr = gr.Dropdown(domains, value="all", label="Domain")
        with gr.Column():
            category_gr = gr.Dropdown(categories, value="all", label="Category")
    btn = gr.Button("Display labeled PDF image & data")
    with gr.Row():
      with gr.Column():
        output_msg = gr.Textbox(label="Output message")
      with gr.Column():
        img_file = gr.File(visible=True, label="Image file of the PDF")
    with gr.Row():
        with gr.Column():
          img_paragraphs_file = gr.File(visible=True, label="Image file (labeled paragraphs)")
          img_paragraphs = gr.Image(type="pil", label="Bounding boxes of labeled paragraphs", visible=True)
        with gr.Column():
          img_lines_file = gr.File(visible=True, label="Image file (labeled lines)")
          img_lines = gr.Image(type="pil", label="Bounding boxes of labeled lines", visible=True)
    with gr.Row():
      with gr.Column():
        with gr.Row():
          csv_paragraphs = gr.File(visible=False, label="CSV file (paragraphs)")
        with gr.Row():
          df_paragraphs = gr.Dataframe(
              headers=["paragraphs", "categories", "texts", "bounding boxes"],
              datatype=["number", "str", "str", "str"],
              col_count=(4, "fixed"), 
              visible=True,
              label="Paragraphs data",
              type="pandas",
              wrap=True
            )
      with gr.Column():
        with gr.Row():
          csv_lines = gr.File(visible=False, label="CSV file (lines)")
        with gr.Row():
          df_lines = gr.Dataframe(
              headers=["lines", "categories", "texts", "bounding boxes"],
              datatype=["number", "str", "str", "str"],
              col_count=(4, "fixed"), 
              visible=True,
              label="Lines data",
              type="pandas",
              wrap=True
            )
    btn.click(generate_annotated_image, inputs=[dataset_name_gr, split_gr, domain_gr, category_gr], outputs=[output_msg, img_file, img_paragraphs, img_lines, img_paragraphs_file, img_lines_file, df_paragraphs, df_lines, csv_paragraphs, csv_lines])

    gr.Markdown("## Example")
    gr.Examples(
        [["small", "all", "all", "all"]],
        [dataset_name_gr, split_gr, domain_gr, category_gr],
        [output_msg, img_file, img_paragraphs, img_lines, img_paragraphs_file, img_lines_file, df_paragraphs, df_lines, csv_paragraphs, csv_lines],
        fn=generate_annotated_image,
        cache_examples=True,
    )

demo.launch()