File size: 21,247 Bytes
ca663e1
b3ecaa7
ca663e1
b3ecaa7
e48d543
b3ecaa7
b748dad
a97ba6f
b3ecaa7
b748dad
 
e330a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b748dad
ca663e1
8400e75
 
 
 
b748dad
 
e48d543
 
a97ba6f
e48d543
b748dad
8400e75
b748dad
e48d543
 
a97ba6f
e48d543
b748dad
8400e75
b748dad
 
 
 
 
 
 
 
 
8400e75
 
 
 
 
e330a04
8400e75
 
 
54434cf
8400e75
 
 
 
54434cf
8400e75
 
 
 
b3ecaa7
8400e75
 
 
 
 
54434cf
8400e75
 
 
b748dad
 
 
 
 
ca663e1
 
b3ecaa7
54434cf
b3ecaa7
b748dad
8400e75
 
54434cf
8400e75
ca663e1
54434cf
 
b3ecaa7
ca663e1
b748dad
 
54434cf
b748dad
 
 
 
 
 
 
 
 
ca663e1
 
 
 
 
 
 
 
 
 
b748dad
 
54434cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b748dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a97ba6f
 
 
 
 
 
 
 
 
b748dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca663e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b482a79
ca663e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54434cf
ca663e1
 
 
54434cf
ca663e1
 
 
b3ecaa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54434cf
b3ecaa7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import time

import pandas as pd
import streamlit as st

from src.configs import ColumnNames, Languages, PreprocessingConfigs, SupportedFiles
from src.preprocessing import PreprocessingPipeline
from src.utils import get_col_indices
from src.wordifier import input_transform, output_transform, wordifier


def docs():
    steps_options = list(PreprocessingPipeline.pipeline_components().keys())

    with st.expander("Documentation for the Advanced Options"):
        component_name = st.selectbox(
            "Select a processing step to see docs",
            options=[""] + steps_options,
            index=1,
            format_func=lambda x: x.replace("_", " ").title(),
            help="Select a processing step to see the relative documentation",
        )

        pipe_component = PreprocessingPipeline.pipeline_components().get(component_name)
        if pipe_component is not None:
            st.help(pipe_component)


def form(df):
    st.subheader("Parameters")
    with st.form("Wordify form"):
        col1, col2, col3 = st.columns(3)
        cols = [""] + df.columns.tolist()
        text_index, label_index = get_col_indices(cols)
        with col1:
            label_column = st.selectbox(
                "Select label column",
                cols,
                index=label_index,
                help="Select the column containing the labels",
            )
        with col2:
            text_column = st.selectbox(
                "Select text column",
                cols,
                index=text_index,
                help="Select the column containing the text",
            )
        with col3:
            language = st.selectbox(
                "Select language",
                [i.name for i in Languages],
                help="""
                    Select the language of your texts amongst the supported one. If we currently do
                    not support it, feel free to open an issue
                """,
            )

        with st.expander("Advanced Options"):
            disable_preprocessing = st.checkbox("Disable Preprocessing", False)

            if not disable_preprocessing:
                steps_options = list(PreprocessingPipeline.pipeline_components().keys())

                pre_steps = st.multiselect(
                    "Select pre-lemmatization processing steps (ordered)",
                    options=steps_options,
                    default=[steps_options[i] for i in PreprocessingConfigs.DEFAULT_PRE.value],
                    format_func=lambda x: x.replace("_", " ").title(),
                    help="Select the processing steps to apply before the text is lemmatized",
                )

                lammatization_options = list(PreprocessingPipeline.lemmatization_component().keys())
                lemmatization_step = st.selectbox(
                    "Select lemmatization",
                    options=lammatization_options,
                    index=PreprocessingConfigs.DEFAULT_LEMMA.value,
                    help="Select lemmatization procedure. This is automatically disabled when the selected language is Chinese or MultiLanguage.",
                )

                post_steps = st.multiselect(
                    "Select post-lemmatization processing steps (ordered)",
                    options=steps_options,
                    default=[steps_options[i] for i in PreprocessingConfigs.DEFAULT_POST.value],
                    format_func=lambda x: x.replace("_", " ").title(),
                    help="Select the processing steps to apply after the text is lemmatized",
                )

        # Every form must have a submit button.
        submitted = st.form_submit_button("Submit")
        if submitted:

            start_time = time.time()

            # warnings about inputs
            language_specific_warnings(pre_steps, post_steps, lemmatization_step, language)

            # preprocess
            if not disable_preprocessing:
                with st.spinner("Step 1/4: Preprocessing text"):
                    pipe = PreprocessingPipeline(language, pre_steps, lemmatization_step, post_steps)
                    df = pipe.vaex_process(df, text_column)
            else:
                with st.spinner("Step 1/4: Preprocessing has been disabled - doing nothing"):
                    df = df.rename(columns={text_column: ColumnNames.PROCESSED_TEXT.value})
                    time.sleep(1.2)

            # prepare input
            with st.spinner("Step 2/4: Preparing inputs"):
                input_dict = input_transform(df[ColumnNames.PROCESSED_TEXT.value], df[label_column])

            # wordify
            with st.spinner("Step 3/4: Wordifying"):
                pos, neg = wordifier(**input_dict)

            # prepare output
            with st.spinner("Step 4/4: Preparing outputs"):
                new_df = output_transform(pos, neg)

            end_time = time.time()
            meta_data = {
                "vocab_size": input_dict["X"].shape[1],
                "n_instances": input_dict["X"].shape[0],
                "vocabulary": pd.DataFrame({"Vocabulary": input_dict["X_names"]}),
                "labels": pd.DataFrame({"Labels": input_dict["y_names"]}),
                "time": round(end_time - start_time),
            }

            return new_df, meta_data


def presentation():
    st.markdown(
        """
        Wordify makes it easy to identify words that discriminate categories in textual data.
        It was proposed by Dirk Hovy, Shiri Melumad, and Jeffrey J Inman in 
        [Wordify: A Tool for Discovering and Differentiating Consumer Vocabularies](https://academic.oup.com/jcr/article/48/3/394/6199426).
        
        :point_left: Start by uploading a file. *Once you upload the file, __Wordify__ will
        show an interactive UI*.
        """
    )

    st.subheader("Quickstart")
    st.markdown(
        """
        - There is no need to preprocess your text, we will take care of it. However, if you wish to
        do so, turn off preprocessing in the `Advanced Settings` in the interactive UI.

        - We expect a file with two columns: `label` with the labels and `text` with the texts (the names are case insensitive). If
        you provide a file following this naming convention, Wordify will automatically select the
        correct columns. However, if you wish to use a different nomenclature, you will be asked to
        provide the column names in the interactive UI.

        - Maintain a stable connection with the Wordify page until you download the data. If you refresh the page, 
        a new Wordify session is created and your progress is lost.
        
        - Wordify performances depend on the length of the individual texts in your file. The longer the texts, the higher
        the chance that Wordify considers many n-grams. More n-grams means more data to analyse in each run.
        We tailored Wordify performance for files of approximately 5'000 lines or 50k n-grams. In such cases we expect a runtime
        between 90 seconds and 10 minutes. If your file is big, try to apply a stricter preprocessing of the text in the `Advanced Options` section.
        If this is not enough, please do feel free to reach out to us directly so we can help.
        """
    )

    how_to_use()
    how_it_works()


def how_to_use():
    with st.expander("How to use Wordify"):

        st.subheader("Input format")
        st.markdown(
            """
            Please note that your file must have a column with the texts and a column with the labels,
            for example
            """
        )
        st.table(
            {
                "text": ["A review", "Another review", "Yet another one", "etc"],
                "label": ["Good", "Bad", "Good", "etc"],
            }
        )

        st.subheader("Output format")
        st.markdown(
            """
            As a result of the process, you will get a file containing 4 columns:
            - `Word`: the n-gram (i.e., a word or a concatenation of words) considered
            - `Score`: the wordify score, between 0 and 1, of how important is `Word` to discrimitate `Label`
            - `Label`: the label that `Word` is discriminating
            - `Correlation`: how `Word` is correlated with `Label` (e.g., "negative" means that if `Word` is present in the text then the label is less likely to be `Label`)

            for example
            """
        )

        st.table(
            {
                "Word": ["good", "awful", "bad service", "etc"],
                "Score": ["0.52", "0.49", "0.35", "etc"],
                "Label": ["Good", "Bad", "Good", "etc"],
                "Correlation": ["positive", "positive", "negative", "etc"],
            }
        )


def how_it_works():
    table2 = pd.DataFrame(
        {
            "Text": [
                "Spice light wine",
                "Wine oak heavy",
                "Chardonnay buttery light",
                "Wine light cherry",
                "Chardonnay wine oak buttery",
            ],
            "Label": ["Italy", "United States", "United States", "Italy", "United States"],
        }
    )

    table3 = pd.DataFrame(
        {
            "Model": [1, 2, 3, 4],
            "Buttery": [0.32, 0, 0, 0],
            "Chardonnay": [3.78, 0, 0, 0],
            "Cherry": [-2.49, 0, 0, -6.2],
            "Heavy": [0, 3.62, 0, 0],
            "Light": [-1.72, -4.38, 0, 0],
            "Oak": [0, 0, 0, 0],
            "Spice": [-2.49, 0, -6.2, 0],
            "Wine": [0, 0, 0, 0],
        },
        dtype=str,
    )

    table4 = pd.DataFrame(
        {
            "Coefficient valence": ["positive", "negative"],
            "Buttery": [0.25, 0],
            "Chardonnay": [0.25, 0],
            "Cherry": [0, 0.5],
            "Heavy": [0.25, 0],
            "Light": [0, 0.5],
            "Oak": [0, 0],
            "Spice": [0, 0.5],
            "Wine": [0, 0],
        },
        dtype=str,
    )

    with st.expander("How Wordify works: an illustrative example"):
        st.markdown(
            f"""
            To provide an intuitive example of how Wordify works, imagine we have the following five documents with hypothetical
            descriptions of wines from the United States and Italy listed in table 2 (preprocessed to remove noise words).
            """
        )
        st.caption("Table 2: Descriptions of wines from the USA and Italy.")
        st.table(table2)

        st.markdown(
            """
            Wordify now draws, say, four independent samples from this data, for example: `(1,3,4,5)`, `(1,2,2,4)`, `(1,1,2,3)`, and `(2,3,4,4)`.
            We fit an L1-regularized Logistic Regression on each, with the United States as target class. This result in the following sparse
            vectors of coefficients reported in table 3 (indicators that are not present in a run are listed as 0 here):
            """
        )
        st.caption("Table 3: Coefficients for frequency of indicators in each of the four runs for US wines.")
        st.table(table3)

        st.markdown(
            """
            We can now count for each indicator how many times out of the four runs it received a non-zero coefficient (the magnitude does not matter).
            We distinguish by positive and negative coefficients, and divide the result by the number of runs (here, four), which yields the final indicators
            that are positively and negatively correlated with the US wines.
            """
        )
        st.caption("Table 4: Final set of indicators that are positively versus negatively correlated with US wines.")
        st.table(table4)
        st.markdown(
            """
            The results of table 4 suggest that a wine is likely to be from the United States if its description contains any of the following words: "buttery",
            "chardonnay", or "heavy", and these words are similarly discriminative. In contrast, a wine is likely to not be from the United States if it contains
            the words "spice", "light", or "cherry". It is also worth noting that "oak" and "wine", which were present for both Italian and US wines, were ultimately
            not selected as discriminative indicators of US wines. Finally, we would conduct an analogous analysis with Italy as the target class to determine which
            indicators are most and least discriminative of Italian wines.
            """
        )


def faq():
    st.subheader("Frequently Asked Questions")
    with st.expander("What is Wordify?"):
        st.markdown(
            """
            __Wordify__ is a way to find out which n-grams (i.e., words and concatenations of words) are most indicative for each of your dependent
            variable values.
            """
        )

    with st.expander("What happens to my data?"):
        st.markdown(
            """
            Nothing. We never store the data you upload on disk: it is only kept in memory for the
            duration of the modeling, and then deleted. We do not retain any copies or traces of
            your data.
            """
        )

    with st.expander("What input formats do you support?"):
        st.markdown(
            f"""
            We currently support {", ".join([i.name for i in SupportedFiles])}.
            """
        )

    with st.expander("Do I need to preprocess my data?"):
        st.markdown(
            """
            No, there is no need to preprocess your text, we will take of it. 
            However, if you wish to do so, turn off preprocessing in the `Advanced
            Settings` in the interactive UI.
        """
        )

    with st.expander("What languages are supported?"):
        st.markdown(
            f"""
            Currently we support: {", ".join([i.name for i in Languages])}.
            """
        )

    with st.expander("How does it work?"):
        st.markdown(
            """
            It uses a variant of the Stability Selection algorithm
            [(Meinshausen and Bühlmann, 2010)](https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-9868.2010.00740.x)
            to fit hundreds of logistic regression models on random subsets of the data, using
            different L1 penalties to drive as many of the term coefficients to 0. Any terms that
            receive a non-zero coefficient in at least 30% of all model runs can be seen as stable
            indicators.
            """
        )

    with st.expander("What libraries do you use?"):
        st.markdown(
            """
            We leverage the power of many great libraries in the Python ecosystem:
            - `Streamlit`
            - `Pandas`
            - `Numpy`
            - `Spacy`
            - `Scikit-learn`
            - `Vaex`
            """
        )

    with st.expander("How much data do I need?"):
        st.markdown(
            """
            We recommend at least 2000 instances, the more, the better. With fewer instances, the
            results are less replicable and reliable.
            """
        )

    with st.expander("Is there a paper I can cite?"):
        st.markdown(
            """
            Yes, please! Cite [Wordify: A Tool for Discovering and Differentiating Consumer Vocabularies](https://academic.oup.com/jcr/article/48/3/394/6199426)
            ```
            @article{10.1093/jcr/ucab018,
                author = {Hovy, Dirk and Melumad, Shiri and Inman, J Jeffrey},
                title = "{Wordify: A Tool for Discovering and Differentiating Consumer Vocabularies}",
                journal = {Journal of Consumer Research},
                volume = {48},
                number = {3},
                pages = {394-414},
                year = {2021},
                month = {03},
                abstract = "{This work describes and illustrates a free and easy-to-use online text-analysis tool for understanding how consumer word use varies across contexts. The tool, Wordify, uses randomized logistic regression (RLR) to identify the words that best discriminate texts drawn from different pre-classified corpora, such as posts written by men versus women, or texts containing mostly negative versus positive valence. We present illustrative examples to show how the tool can be used for such diverse purposes as (1) uncovering the distinctive vocabularies that consumers use when writing reviews on smartphones versus PCs, (2) discovering how the words used in Tweets differ between presumed supporters and opponents of a controversial ad, and (3) expanding the dictionaries of dictionary-based sentiment-measurement tools. We show empirically that Wordify’s RLR algorithm performs better at discriminating vocabularies than support vector machines and chi-square selectors, while offering significant advantages in computing time. A discussion is also provided on the use of Wordify in conjunction with other text-analysis tools, such as probabilistic topic modeling and sentiment analysis, to gain more profound knowledge of the role of language in consumer behavior.}",
                issn = {0093-5301},
                doi = {10.1093/jcr/ucab018},
                url = {https://doi.org/10.1093/jcr/ucab018},
                eprint = {https://academic.oup.com/jcr/article-pdf/48/3/394/40853499/ucab018.pdf},
            }
            ```
            """
        )

    with st.expander("How can I reach out to the Wordify team?"):
        st.markdown(contacts(), unsafe_allow_html=True)


def footer():
    st.sidebar.markdown(
        """
        <span style="font-size: 0.75em">Built with &hearts; by [`Pietro Lesci`](https://pietrolesci.github.io/) and [`MilaNLP`](https://twitter.com/MilaNLProc?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor).</span>
        """,
        unsafe_allow_html=True,
    )


def contacts():
    return """
    You can reach out to us via email, phone, or via mail
    
    - :email: [email protected]
    
    - :telephone_receiver: +39 02 5836 2604
    
    - :postbox: Via Röntgen n. 1, Milan 20136 (ITALY)


    <iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d2798.949796165441!2d9.185730115812493!3d45.450667779100726!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x4786c405ae6543c9%3A0xf2bb2313b36af88c!2sVia%20Guglielmo%20R%C3%B6ntgen%2C%201%2C%2020136%20Milano%20MI!5e0!3m2!1sit!2sit!4v1569325279433!5m2!1sit!2sit" frameborder="0" style="border:0; width: 100%; height: 312px;" allowfullscreen></iframe>
    """


def analysis(outputs):

    df, meta_data = outputs

    st.subheader("Results")
    st.markdown(
        """
    Wordify successfully run and you can now look at the results before downloading the wordified file.
    In particular, you can use the slider to filter only those words that have a `Score` above (>=) a certain threshold.
    For meaningful results, we suggest keeping the threshold to 0.25.
    """
    )

    col1, col2 = st.columns([2, 1])

    with col1:
        threshold = st.slider(
            "Select threshold",
            min_value=0.0,
            max_value=1.0,
            step=0.01,
            value=0.25,
            help="To return everything, select 0.",
        )
        subset_df = df.loc[df["Score"] >= threshold].reset_index(drop=True)
        st.write(subset_df)

    with col2:
        st.markdown("**Some info about your data**")
        st.markdown(
            f"""
            Your input file contained {meta_data["n_instances"]:,} rows and 
            Wordify took {meta_data["time"]:,} seconds to run.
            
            The total number of n-grams Wordify considered is {meta_data["vocab_size"]:,}.
            With the current selected threshold on the `Score` (>={threshold}) the output contains {subset_df["Word"].nunique():,}
            unique n-grams.
            """
        )

        with st.expander("Vocabulary"):
            st.markdown("The table below shows all candidate n-grams that Wordify considered")
            st.write(meta_data["vocabulary"])

        with st.expander("Labels"):
            st.markdown("The table below summarizes the labels that your file contained")
            st.write(meta_data["labels"])

    return subset_df


# warning for Chinese and MultiLanguage
def language_specific_warnings(pre_steps, post_steps, lemmatization_step, language):

    if language in ("MultiLanguage", "Chinese") and (
        "remove_non_words" in pre_steps or "remove_non_words" in post_steps
    ):
        msg = """
        NOTE: for Chinese and MultiLanguage we automatically substitute `remove_non_words` with
        `remove_numbers` and `remove_punctuation` to avoid wrong results.
        """
        st.info(msg)

    msg = "NOTE: for Chinese and MultiLanguage we turn-off lemmatization automatically."
    if lemmatization_step == "Spacy lemmatizer (keep stopwords)" and language in (
        "MultiLanguage",
        "Chinese",
    ):
        st.info(msg)

    elif lemmatization_step == "Spacy lemmatizer (remove stopwords)" and language in (
        "MultiLanguage",
        "Chinese",
    ):
        st.info(
            msg + " However we will still remove stopwords since you selected `Spacy lemmatizer (remove stopwords)`."
        )