pritamdeka commited on
Commit
63fd32a
Β·
1 Parent(s): 5354eb3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -14
app.py CHANGED
@@ -54,20 +54,24 @@ sp = en_core_sci_lg.load()
54
  all_stopwords = sp.Defaults.stop_words
55
 
56
 
 
 
 
 
 
 
 
 
 
 
57
  def remove_stopwords(sen):
58
  sen_new = " ".join([i for i in sen if i not in stop_words])
59
  return sen_new
60
 
61
 
62
 
63
- def keyphrase_generator(article_link, model_1, model_2, max_num_keywords, model_3):
64
- word_embedding_model = models.Transformer(model_3)
65
- pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
66
- pooling_mode_mean_tokens=True,
67
- pooling_mode_cls_token=False,
68
- pooling_mode_max_tokens=False)
69
 
70
- embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
71
  element=[]
72
  cluster_list_final=[]
73
  comb_list=[]
@@ -265,18 +269,13 @@ igen_pubmed = gr.Interface(keyphrase_generator,
265
  type="value",
266
  default='sentence-transformers/all-mpnet-base-v1',
267
  label="Select any SBERT model for keyphrases from the list below"),
268
- gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords"),
269
- gr.inputs.Dropdown(choices=['cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
270
- 'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token'],
271
- type="value",
272
- default='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
273
- label="Select any SapBERT model for clustering from the list below")],
274
  outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, overflow_row_behaviour="paginate"),
275
  theme="peach",
276
  title="Scientific Article Keyphrase Generator", description="Generates the keyphrases from an article which best describes the article.",
277
  article= "The work is based the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
278
  "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
279
- "\t The application then uses a <a href=https://arxiv.org/abs/2010.11784>UMLS based Bert model</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 10 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. The UMLS Bert models can be chosen from the list provided. "
280
  "\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
281
  "\t The default model names are provided which can be changed from the list of pretrained models. "
282
  "\t The value of keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")
 
54
  all_stopwords = sp.Defaults.stop_words
55
 
56
 
57
+
58
+ word_embedding_model = models.Transformer('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
59
+ pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
60
+ pooling_mode_mean_tokens=True,
61
+ pooling_mode_cls_token=False,
62
+ pooling_mode_max_tokens=False)
63
+
64
+ embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
65
+
66
+
67
  def remove_stopwords(sen):
68
  sen_new = " ".join([i for i in sen if i not in stop_words])
69
  return sen_new
70
 
71
 
72
 
73
+ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
 
 
 
 
 
74
 
 
75
  element=[]
76
  cluster_list_final=[]
77
  comb_list=[]
 
269
  type="value",
270
  default='sentence-transformers/all-mpnet-base-v1',
271
  label="Select any SBERT model for keyphrases from the list below"),
272
+ gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
 
 
 
 
 
273
  outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, overflow_row_behaviour="paginate"),
274
  theme="peach",
275
  title="Scientific Article Keyphrase Generator", description="Generates the keyphrases from an article which best describes the article.",
276
  article= "The work is based the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
277
  "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
278
+ "\t The application then uses a <a href=https://arxiv.org/abs/2010.11784>UMLS based Bert model</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 10 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. "
279
  "\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
280
  "\t The default model names are provided which can be changed from the list of pretrained models. "
281
  "\t The value of keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")