pritamdeka commited on
Commit
95e9c38
Β·
1 Parent(s): e736e68

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -251,15 +251,16 @@ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords, model_
251
  for list_elem in sorted_titles:
252
  sorted_abstract_list.append(my_dict[list_elem])
253
  sorted_dict = {'Title': sorted_titles, 'Abstract': sorted_abstract_list}
254
- df_new=pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in sorted_dict.items() ]))
255
-
256
  df_final = df_new.fillna(' ')
 
257
 
258
 
259
  ############################################# Ends here ####################################################
260
 
261
  #return df_final
262
- return sorted_dict
 
263
 
264
 
265
  igen_pubmed = gr.Interface(keyphrase_generator,
@@ -308,7 +309,8 @@ igen_pubmed = gr.Interface(keyphrase_generator,
308
  default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
309
  label="Select any SBERT model for abstracts from the list below")],
310
  #outputs=gr.outputs.Dataframe(type="auto", label="Retrieved Results from PubMed",max_cols=2, overflow_row_behaviour="paginate"),
311
- outputs=gr.outputs.JSON(label=None),
 
312
  theme="peach", layout="horizontal",
313
  title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references. The output is in the form of JSON with <b><i>Titles</i></b> and <b><i>Abstracts</i></b>. Please note that it may take sometime for the models to load. Examples are provided below for demo purposes. Choose any one example to see the results. The models can be changed to see different results. ",
314
  examples=[
 
251
  for list_elem in sorted_titles:
252
  sorted_abstract_list.append(my_dict[list_elem])
253
  sorted_dict = {'Title': sorted_titles, 'Abstract': sorted_abstract_list}
254
+ df_new=pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in sorted_dict.items() ]))
 
255
  df_final = df_new.fillna(' ')
256
+ fp = df_final_to_csv('title_abstract.csv', index=False)
257
 
258
 
259
  ############################################# Ends here ####################################################
260
 
261
  #return df_final
262
+ return fp
263
+ #return sorted_dict
264
 
265
 
266
  igen_pubmed = gr.Interface(keyphrase_generator,
 
309
  default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
310
  label="Select any SBERT model for abstracts from the list below")],
311
  #outputs=gr.outputs.Dataframe(type="auto", label="Retrieved Results from PubMed",max_cols=2, overflow_row_behaviour="paginate"),
312
+ #outputs=gr.outputs.JSON(label=None),
313
+ outputs=gr.outputs.File(label=None),
314
  theme="peach", layout="horizontal",
315
  title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references. The output is in the form of JSON with <b><i>Titles</i></b> and <b><i>Abstracts</i></b>. Please note that it may take sometime for the models to load. Examples are provided below for demo purposes. Choose any one example to see the results. The models can be changed to see different results. ",
316
  examples=[