textual-inversion-sd / sd_utils.py
744/C/B0228844//Rohit_Jain
app
5b47935
raw
history blame
9.08 kB
import os
import numpy
import torch
from torch import autocast
from torchvision import transforms as tfms
import torch.nn.functional as F
import PIL
from PIL import Image
from diffusers import StableDiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, KDPM2DiscreteScheduler
# For video display:
from IPython.display import HTML
from matplotlib import pyplot as plt
from pathlib import Path
from tqdm.auto import tqdm
import cv2
bb = cv2.imread("./qr_code1.png")
bb = cv2.cvtColor(bb, cv2.COLOR_BGR2RGB)
tfm2 = tfms.Compose([
tfms.ToTensor(),
tfms.Resize([512, 512]),
tfms.CenterCrop(512),
#tfms.Normalize((0.6813,0.6813, 0.6813), (0.4549, 0.4549, 0.4549))
])
img2 = tfm2(bb)
device = "cuda" if torch.cuda.is_available() else "cpu"
pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
#scheduler = KDPM2DiscreteScheduler(num_train_timesteps=1000, beta_start=)
# To the GPU we go!
vae = vae.to(device)
text_encoder = text_encoder.to(device)
unet = unet.to(device)
pipe = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path,torch_dtype=torch.float16).to(device)
# birb_embed = pipe.load_textual_inversion("sd-concepts-library/birb-style")
# herge_embed = pipe.load_textual_inversion("sd-concepts-library/herge-style")
# indian_water_color_embed = pipe.load_textual_inversion("sd-concepts-library/indian-watercolor-portraits")
# midjourney_embed = pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
# marc_allante_embed = pipe.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
birb_embed = torch.load('./birb-style/learned_embeds.bin')
herge_embed = torch.load('./herge-style/learned_embeds.bin')
indian_water_color_embed = torch.load('./indian-watercolor-portraits/learned_embeds.bin')
midjourney_embed = torch.load('./midjourney-style/learned_embeds.bin')
marc_allante_embed = torch.load('./style-of-marc-allante/learned_embeds.bin')
style_seeds = {
'birb': 321,
'herge': 1,
'indian_watercolor': 42,
'midjourney': 8081,
'marc_allante': 100
}
def qr_loss(images, qr_img):
#qr_img = 0.5 * qr_img
qr_img = qr_img.unsqueeze(0).to(device)
#error = F.mse_loss(images, qr_img, reduction='mean')
error = F.l1_loss(images, qr_img, reduction='mean')
return error
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
#causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready
return output
def build_causal_attention_mask(bsz, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
def generate_with_embs_custom_loss(prompt, text_embeddings, seed):
#prompt = "A labrador dog in a car" #@param
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 50 #@param # Number of denoising steps
guidance_scale = 11 #@param # Scale for classifier-free guidance
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
batch_size = 1
blue_loss_scale = 100 #@param
# Prep text
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
# And the uncond. input as before:
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i%2 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
#loss = blue_loss(denoised_images) * blue_loss_scale
#loss = purple_loss(denoised_images) * blue_loss_scale
loss = qr_loss(denoised_images, img2) * blue_loss_scale
# Occasionally print it out
if i%10==0:
print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]