Spaces:
Runtime error
Runtime error
import os | |
import numpy | |
import torch | |
from torch import autocast | |
from torchvision import transforms as tfms | |
import torch.nn.functional as F | |
import PIL | |
from PIL import Image | |
from diffusers import StableDiffusionPipeline | |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, logging | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, KDPM2DiscreteScheduler | |
# For video display: | |
from IPython.display import HTML | |
from matplotlib import pyplot as plt | |
from pathlib import Path | |
from tqdm.auto import tqdm | |
import cv2 | |
bb = cv2.imread("./qr_code1.png") | |
bb = cv2.cvtColor(bb, cv2.COLOR_BGR2RGB) | |
tfm2 = tfms.Compose([ | |
tfms.ToTensor(), | |
tfms.Resize([512, 512]), | |
tfms.CenterCrop(512), | |
#tfms.Normalize((0.6813,0.6813, 0.6813), (0.4549, 0.4549, 0.4549)) | |
]) | |
img2 = tfm2(bb) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4" | |
# Load the autoencoder model which will be used to decode the latents into image space. | |
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae") | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
# The UNet model for generating the latents. | |
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet") | |
# The noise scheduler | |
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) | |
#scheduler = KDPM2DiscreteScheduler(num_train_timesteps=1000, beta_start=) | |
# To the GPU we go! | |
vae = vae.to(device) | |
text_encoder = text_encoder.to(device) | |
unet = unet.to(device) | |
pipe = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path,torch_dtype=torch.float16).to(device) | |
# birb_embed = pipe.load_textual_inversion("sd-concepts-library/birb-style") | |
# herge_embed = pipe.load_textual_inversion("sd-concepts-library/herge-style") | |
# indian_water_color_embed = pipe.load_textual_inversion("sd-concepts-library/indian-watercolor-portraits") | |
# midjourney_embed = pipe.load_textual_inversion("sd-concepts-library/midjourney-style") | |
# marc_allante_embed = pipe.load_textual_inversion("sd-concepts-library/style-of-marc-allante") | |
birb_embed = torch.load('./birb-style/learned_embeds.bin') | |
herge_embed = torch.load('./herge-style/learned_embeds.bin') | |
indian_water_color_embed = torch.load('./indian-watercolor-portraits/learned_embeds.bin') | |
midjourney_embed = torch.load('./midjourney-style/learned_embeds.bin') | |
marc_allante_embed = torch.load('./style-of-marc-allante/learned_embeds.bin') | |
style_seeds = { | |
'birb': 321, | |
'herge': 1, | |
'indian_watercolor': 42, | |
'midjourney': 8081, | |
'marc_allante': 100 | |
} | |
def qr_loss(images, qr_img): | |
#qr_img = 0.5 * qr_img | |
qr_img = qr_img.unsqueeze(0).to(device) | |
#error = F.mse_loss(images, qr_img, reduction='mean') | |
error = F.l1_loss(images, qr_img, reduction='mean') | |
return error | |
def set_timesteps(scheduler, num_inference_steps): | |
scheduler.set_timesteps(num_inference_steps) | |
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925 | |
def pil_to_latent(input_im): | |
# Single image -> single latent in a batch (so size 1, 4, 64, 64) | |
with torch.no_grad(): | |
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling | |
return 0.18215 * latent.latent_dist.sample() | |
def latents_to_pil(latents): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def get_output_embeds(input_embeddings): | |
# CLIP's text model uses causal mask, so we prepare it here: | |
bsz, seq_len = input_embeddings.shape[:2] | |
#causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) | |
causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) | |
# Getting the output embeddings involves calling the model with passing output_hidden_states=True | |
# so that it doesn't just return the pooled final predictions: | |
encoder_outputs = text_encoder.text_model.encoder( | |
inputs_embeds=input_embeddings, | |
attention_mask=None, # We aren't using an attention mask so that can be None | |
causal_attention_mask=causal_attention_mask.to(device), | |
output_attentions=None, | |
output_hidden_states=True, # We want the output embs not the final output | |
return_dict=None, | |
) | |
# We're interested in the output hidden state only | |
output = encoder_outputs[0] | |
# There is a final layer norm we need to pass these through | |
output = text_encoder.text_model.final_layer_norm(output) | |
# And now they're ready | |
return output | |
def build_causal_attention_mask(bsz, seq_len, dtype): | |
# lazily create causal attention mask, with full attention between the vision tokens | |
# pytorch uses additive attention mask; fill with -inf | |
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype) | |
mask.fill_(torch.tensor(torch.finfo(dtype).min)) | |
mask.triu_(1) # zero out the lower diagonal | |
mask = mask.unsqueeze(1) # expand mask | |
return mask | |
def generate_with_embs_custom_loss(prompt, text_embeddings, seed): | |
#prompt = "A labrador dog in a car" #@param | |
height = 512 # default height of Stable Diffusion | |
width = 512 # default width of Stable Diffusion | |
num_inference_steps = 50 #@param # Number of denoising steps | |
guidance_scale = 11 #@param # Scale for classifier-free guidance | |
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise | |
batch_size = 1 | |
blue_loss_scale = 100 #@param | |
# Prep text | |
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
text_embeddings = text_encoder(text_input.input_ids.to(device))[0] | |
# And the uncond. input as before: | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# Prep Scheduler | |
set_timesteps(scheduler, num_inference_steps) | |
# Prep latents | |
latents = torch.randn( | |
(batch_size, unet.in_channels, height // 8, width // 8), | |
generator=generator, | |
) | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
# Loop | |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform CFG guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
#### ADDITIONAL GUIDANCE ### | |
if i%2 == 0: | |
# Requires grad on the latents | |
latents = latents.detach().requires_grad_() | |
# Get the predicted x0: | |
latents_x0 = latents - sigma * noise_pred | |
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample | |
# Decode to image space | |
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) | |
# Calculate loss | |
#loss = blue_loss(denoised_images) * blue_loss_scale | |
#loss = purple_loss(denoised_images) * blue_loss_scale | |
loss = qr_loss(denoised_images, img2) * blue_loss_scale | |
# Occasionally print it out | |
if i%10==0: | |
print(i, 'loss:', loss.item()) | |
# Get gradient | |
cond_grad = torch.autograd.grad(loss, latents)[0] | |
# Modify the latents based on this gradient | |
latents = latents.detach() - cond_grad * sigma**2 | |
# Now step with scheduler | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
return latents_to_pil(latents)[0] | |