ibleu / ibleu.py
rahular's picture
added docs
e3f9170
raw
history blame
7 kB
"""iBleu metric."""
import datasets
import sacrebleu as scb
from packaging import version
import evaluate
_CITATION = """\
@inproceedings{sun-zhou-2012-joint,
title = "Joint Learning of a Dual {SMT} System for Paraphrase Generation",
author = "Sun, Hong and
Zhou, Ming",
booktitle = "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2012",
address = "Jeju Island, Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P12-2008",
pages = "38--42",
}
"""
_DESCRIPTION = """\
iBLEU measures the adequacy and dissimilarity of generated paraphrases.
"""
_KWARGS_DESCRIPTION = """
Produces iBLEU score from an input and a prediction against one or more references.
Args:
inputs (`list` of `str`): list of model inputs. Each input should be tokenized into a list of tokens.
predictions (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens.
references (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length).
alpha (`float`): parameter for balancing between adequacy and dissimilarity; smaller α value indicates larger punishment on self-paraphrase.
smooth_method (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are:
- `'none'`: no smoothing
- `'floor'`: increment zero counts
- `'add-k'`: increment num/denom by k for n>1
- `'exp'`: exponential decay
smooth_value (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`).
tokenize (`str`): Tokenization method to use for iBLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are:
- `'none'`: No tokenization.
- `'zh'`: Chinese tokenization.
- `'13a'`: mimics the `mteval-v13a` script from Moses.
- `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses
- `'char'`: Language-agnostic character-level tokenization.
- `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3).
lowercase (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`.
force (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`.
use_effective_order (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`.
Returns:
'score': iBLEU score,
Examples:
>>> inputs = ["greetings general kenobi", "foo foo bar bar"]
>>> predictions = ["hello there general kenobi", "foo bar foobar"]
>>> references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]]
>>> ibleu = evaluate.load("rahular/ibleu")
>>> results = ibleu.compute(inputs=inputs, predictions=predictions, references=references)
>>> print(results)
{'score': 60.41585343630594}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ibleu(evaluate.Metric):
def _info(self):
if version.parse(scb.__version__) < version.parse("1.4.12"):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
'You can install it with `pip install "sacrebleu>=1.4.12"`.'
)
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=[
datasets.Features(
{
"inputs": datasets.Value("string", id="sequence"),
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(
datasets.Value("string", id="sequence"), id="references"
),
}
),
datasets.Features(
{
"inputs": datasets.Value("string", id="sequence"),
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html"
],
)
def _compute(
self,
inputs,
predictions,
references,
alpha=0.7,
smooth_method="exp",
smooth_value=None,
force=False,
lowercase=False,
tokenize=None,
use_effective_order=False,
):
# if only one reference is provided make sure we still use list of lists
if isinstance(references[0], str):
references = [[ref] for ref in references]
# we need to do the same for inputs
if isinstance(inputs[0], str):
inputs = [[inp] for inp in inputs]
else:
raise ValueError("There can be only one input string")
references_per_prediction = len(references[0])
if any(len(refs) != references_per_prediction for refs in references):
raise ValueError("Sacrebleu requires the same number of references for each prediction")
transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)]
tgt_bleu = scb.corpus_bleu(
predictions,
transformed_references,
smooth_method=smooth_method,
smooth_value=smooth_value,
force=force,
lowercase=lowercase,
use_effective_order=use_effective_order,
**(dict(tokenize=tokenize) if tokenize else {}),
).score
self_bleu = scb.corpus_bleu(
predictions,
inputs,
smooth_method=smooth_method,
smooth_value=smooth_value,
force=force,
lowercase=lowercase,
use_effective_order=use_effective_order,
**(dict(tokenize=tokenize) if tokenize else {}),
).score
output_dict = {
"score": alpha * tgt_bleu - (1 - alpha) * self_bleu
}
return output_dict