Spaces:
Runtime error
Runtime error
File size: 13,524 Bytes
013216e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import gradio as gr
import numpy as np
import cv2
import torch
import os
import logging
import contextlib
from sam2.build_sam import build_sam2_video_predictor
# Add current directory to path
import sys
sys.path.append(os.getcwd())
sys.path.append(os.path.join(os.getcwd(), "sam2")) # Add sam2 directory to path
print(f"current dir is {os.getcwd()}")
# Ensure device setup matches the official code
force_cpu_device = os.environ.get("SAM2_DEMO_FORCE_CPU_DEVICE", "0") == "1"
if force_cpu_device:
logging.info("forcing CPU device for SAM 2 demo")
if torch.cuda.is_available() and not force_cpu_device:
DEVICE = torch.device("cuda")
elif torch.backends.mps.is_available() and not force_cpu_device:
DEVICE = torch.device("mps")
else:
DEVICE = torch.device("cpu")
logging.info(f"using device: {DEVICE}")
if DEVICE.type == "cuda":
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
elif DEVICE.type == "mps":
logging.warning(
"\nSupport for MPS devices is preliminary. SAM 2 is trained with CUDA and might "
"give numerically different outputs and sometimes degraded performance on MPS. "
"See e.g. https://github.com/pytorch/pytorch/issues/84936 for a discussion."
)
def load_model_paths(checkpoint_name):
"""Get model checkpoint and config paths"""
if checkpoint_name == "SAM2-T":
sam2_checkpoint = "models/sam2.1_hiera_tiny.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_t.yaml"
elif checkpoint_name == "SAM2-S":
sam2_checkpoint = "models/sam2.1_hiera_small.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_s.yaml"
elif checkpoint_name == "SAM2-B_PLUS":
sam2_checkpoint = "models/sam2.1_hiera_base_plus.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_b+.yaml"
else:
raise ValueError(f"Invalid checkpoint name: {checkpoint_name}")
return sam2_checkpoint, model_cfg
# Available checkpoints
CHECKPOINTS = {
"SAM2-B_PLUS": "Base Plus Model",
"SAM2-S": "Small Model",
"SAM2-T": "Tiny Model",
}
class GolfTracker:
def __init__(self, checkpoint="SAM2-T"):
"""Initialize with specified checkpoint model"""
self.current_checkpoint = checkpoint
self.predictor = None
self.points = []
self.frames = []
self.current_frame_idx = 0
self.video_info = None
self.state = None
self.obj_id = 1 # Track single object (golf ball)
self.device = DEVICE
self.out_mask_logits = None
self.load_model(checkpoint)
def load_model(self, checkpoint_name):
"""Load specified checkpoint model"""
if checkpoint_name not in CHECKPOINTS:
raise ValueError(f"Invalid checkpoint: {checkpoint_name}")
print(f"Loading checkpoint: {checkpoint_name}")
sam2_checkpoint, model_cfg = load_model_paths(checkpoint_name)
# Build predictor with model config and checkpoint
self.predictor = build_sam2_video_predictor(
model_cfg, sam2_checkpoint, self.device
)
print(f"Model loaded successfully: {CHECKPOINTS[checkpoint_name]}")
self.current_checkpoint = checkpoint_name
def process_video(self, video_path):
"""Process the video and initialize tracking"""
if not os.path.exists(video_path):
return None, None, None, "Video file not found"
# Reset state
self.points = []
self.frames = []
self.current_frame_idx = 0
self.state = None
# Read video frames
cap = cv2.VideoCapture(video_path)
while True:
ret, frame = cap.read()
if not ret:
break
self.frames.append(frame)
if not self.frames:
return None, None, None, "Failed to read video"
# Store video info
self.video_info = {
"path": video_path,
"height": int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
"width": int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
"fps": cap.get(cv2.CAP_PROP_FPS),
"total_frames": len(self.frames),
}
cap.release()
# Initialize SAM2 state
with self.autocast_context(), torch.inference_mode():
self.state = self.predictor.init_state(video_path)
return (
self.frames[0], # First frame
self.current_checkpoint,
gr.Slider(minimum=0, maximum=len(self.frames) - 1, step=1, value=0),
"Navigate through frames and click on the golf ball to track",
)
def update_frame(self, frame_idx):
"""Update displayed frame"""
if not self.frames or frame_idx >= len(self.frames):
return None
self.current_frame_idx = int(frame_idx)
frame = self.frames[self.current_frame_idx].copy()
# Draw existing points and trajectory
self._draw_tracking(frame)
return frame
def add_point(self, frame, evt: gr.SelectData):
"""Add a point and get ball prediction with enhanced mask visualization"""
if self.state is None:
return frame
x, y = evt.index[0], evt.index[1]
self.points.append((self.current_frame_idx, x, y))
frame_with_points = frame.copy()
# Get ball prediction using SAM2.1
with self.autocast_context(), torch.inference_mode():
# Convert points and labels to numpy arrays
points = np.array([(x, y)], dtype=np.float32)
labels = np.array([1], dtype=np.int32) # 1 for positive click
# Add point and get mask
_, out_obj_ids, out_mask_logits = self.predictor.add_new_points(
inference_state=self.state,
frame_idx=self.current_frame_idx,
obj_id=self.obj_id,
points=points,
labels=labels,
)
if out_mask_logits is not None and len(out_mask_logits) > 0:
self.out_mask_logits = out_mask_logits
# Draw tracking visualization
self._draw_tracking(frame_with_points)
return frame_with_points
def propagate_masks(self):
"""Propagate masks to the entire video after user selection"""
if self.state is None:
return "No state initialized"
logging.info(f"Propagating masks in video with state: {self.state}")
# Propagate the masks across the video
with self.autocast_context(), torch.inference_mode():
frame_idx, obj_ids, video_res_masks = self.predictor.propagate_in_video(
inference_state=self.state,
start_frame_idx=0,
reverse=False,
)
self.out_mask_logits = video_res_masks
return "Propagation complete"
def autocast_context(self):
if self.device.type == "cuda":
return torch.autocast("cuda", dtype=torch.bfloat16)
else:
return contextlib.nullcontext()
def _draw_tracking(self, frame):
"""Draw object mask on frame with enhanced visualization"""
# Assuming out_mask_logits is available from propagate_masks
if self.current_frame_idx < len(self.frames):
mask_np = (self.out_mask_logits[self.current_frame_idx] > 0.0).cpu().numpy()
if mask_np.shape[:2] == frame.shape[:2]:
overlay = frame.copy()
overlay[mask_np > 0] = [0, 0, 255] # Red color for mask
alpha = 0.5 # Transparency factor
frame = cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
return frame
def clear_points(self):
"""Clear all tracked points"""
self.points = []
if self.frames:
return self.frames[self.current_frame_idx].copy()
return None
def change_model(self, checkpoint_name):
"""Change the current model checkpoint"""
if checkpoint_name != self.current_checkpoint:
self.load_model(checkpoint_name)
return f"Loaded {CHECKPOINTS[checkpoint_name]}"
def save_output_video(self):
"""Save the processed video with tracking visualization"""
if not self.frames or not self.video_info:
return None, "No video loaded"
output_path = "output_tracked.mp4"
# Initialize video writer
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(
output_path,
fourcc,
self.video_info["fps"],
(self.video_info["width"], self.video_info["height"]),
)
# Process each frame
for frame_idx in range(len(self.frames)):
frame = self.frames[frame_idx].copy()
# Draw tracking for this frame
frame_points = [(x, y) for f, x, y in self.points if f == frame_idx]
if frame_points:
# Draw points
for x, y in frame_points:
cv2.circle(frame, (int(x), int(y)), 5, (255, 0, 0), -1)
# Fit and draw trajectory if enough points
if len(frame_points) >= 3:
points_arr = np.array(frame_points)
# fit_results = self.trajectory_fitter.fit_trajectory(points_arr)
# if fit_results is not None:
# trajectory = fit_results["trajectory"]
# points = trajectory.astype(np.int32)
# for i in range(len(points) - 1):
# cv2.line(
# frame,
# tuple(points[i]),
# tuple(points[i + 1]),
# (0, 255, 0),
# 2,
# )
# # Calculate and display metrics
# metrics = self.trajectory_fitter.calculate_metrics(fit_results)
# cv2.putText(
# frame,
# f"Speed: {metrics['initial_velocity_mph']:.1f} mph",
# (10, 30),
# cv2.FONT_HERSHEY_SIMPLEX,
# 1,
# (255, 255, 255),
# 2,
# )
# cv2.putText(
# frame,
# f"Height: {metrics['max_height']:.1f} m",
# (10, 70),
# cv2.FONT_HERSHEY_SIMPLEX,
# 1,
# (255, 255, 255),
# 2,
# )
out.write(frame)
out.release()
return output_path, "Video saved successfully!"
def create_ui():
tracker = GolfTracker()
with gr.Blocks() as app:
gr.Markdown("# Golf Ball Trajectory Tracker")
gr.Markdown(
"Upload a video and click on the golf ball positions to track its trajectory"
)
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Input Video")
model_dropdown = gr.Dropdown(
choices=list(CHECKPOINTS.keys()),
value="SAM2-T",
label="Select Model",
)
upload_button = gr.Button("Process Video")
clear_button = gr.Button("Clear Points")
save_button = gr.Button("Save Output Video")
propagate_button = gr.Button("Propagate Masks")
with gr.Column():
image_output = gr.Image(label="Click on golf ball positions")
frame_slider = gr.Slider(
minimum=0,
maximum=0,
step=1,
value=0,
label="Frame",
interactive=True,
)
current_model = gr.Textbox(label="Current Model", interactive=False)
status_text = gr.Textbox(label="Status", interactive=False)
output_video = gr.Video(label="Output Video")
# Event handlers
model_dropdown.change(
fn=tracker.change_model, inputs=[model_dropdown], outputs=[status_text]
)
video_input.change(
fn=tracker.process_video,
inputs=[video_input],
outputs=[image_output, current_model, frame_slider, status_text],
)
upload_button.click(
fn=tracker.process_video,
inputs=[video_input],
outputs=[image_output, current_model, frame_slider, status_text],
)
clear_button.click(fn=tracker.clear_points, inputs=[], outputs=[image_output])
frame_slider.change(
fn=tracker.update_frame, inputs=[frame_slider], outputs=[image_output]
)
image_output.select(
fn=tracker.add_point, inputs=[image_output], outputs=[image_output]
)
save_button.click(
fn=tracker.save_output_video, inputs=[], outputs=[output_video, status_text]
)
propagate_button.click(
fn=tracker.propagate_masks, inputs=[], outputs=[status_text]
)
return app
if __name__ == "__main__":
app = create_ui()
app.launch()
|