Spaces:
Runtime error
Runtime error
File size: 11,449 Bytes
013216e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import gradio as gr
import torch
import numpy as np
import cv2
from sam2.build_sam import build_sam2_video_predictor
import tempfile
import os
import contextlib
class VideoTracker:
def __init__(self):
self.checkpoint = "./models/sam2.1_hiera_tiny.pt"
self.model_cfg = "configs/sam2.1/sam2.1_hiera_t.yaml"
self.predictor = build_sam2_video_predictor(
self.model_cfg, self.checkpoint, device="cpu", mode="eval"
)
self.state = None
self.video_frames = None
self.current_frame_idx = 0
self.masks = []
self.points = []
self.frame_count = 0
self.video_info = None
self.obj_id = 1
self.out_mask_logits = None
self.frame_masks = {} # Store masks for each frame
def load_video(self, video_path):
if video_path is None:
return None, gr.Slider(minimum=0, maximum=0, step=1, value=0)
# Create a temporary file for the video
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
temp_file.close()
# Copy the uploaded video to the temporary file
with open(video_path, "rb") as f_src, open(temp_file.name, "wb") as f_dst:
f_dst.write(f_src.read())
# Load video frames using OpenCV
cap = cv2.VideoCapture(temp_file.name)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
if not frames:
cap.release()
os.unlink(temp_file.name)
return None, gr.Slider(minimum=0, maximum=0, step=1, value=0)
# Store video info
self.video_info = {
"path": temp_file.name,
"height": int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
"width": int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
"fps": cap.get(cv2.CAP_PROP_FPS),
"total_frames": len(frames),
}
cap.release()
self.video_frames = frames
self.frame_count = len(frames)
# Initialize SAM2 state with video path
with torch.inference_mode():
self.state = self.predictor.init_state(temp_file.name)
# Now we can remove the temp file
os.unlink(temp_file.name)
return frames[0], gr.Slider(minimum=0, maximum=len(frames) - 1, step=1, value=0)
def update_frame(self, frame_number):
if self.video_frames is None:
return None
self.current_frame_idx = frame_number
frame = self.video_frames[frame_number].copy()
# Apply any existing mask for this frame
if frame_number in self.frame_masks:
self.out_mask_logits = self.frame_masks[frame_number]
frame = self._draw_tracking(frame)
# Draw points
for point in self.points:
if point[0] == frame_number:
cv2.circle(
frame, (int(point[1]), int(point[2])), 5, (255, 255, 0), -1
) # Yellow dot
cv2.circle(
frame, (int(point[1]), int(point[2])), 7, (0, 0, 0), 1
) # Black border
return frame
def add_point(self, frame, evt: gr.SelectData):
"""Add a point and get ball prediction with enhanced mask visualization"""
if self.state is None:
return frame
x, y = evt.index[0], evt.index[1]
self.points.append((self.current_frame_idx, x, y))
frame_with_points = frame.copy()
# Get ball prediction using SAM2.1
with torch.inference_mode():
# Convert points and labels to numpy arrays
points = np.array([(x, y)], dtype=np.float32)
labels = np.array([1], dtype=np.int32) # 1 for positive click
# Add point and get mask
_, out_obj_ids, out_mask_logits = self.predictor.add_new_points(
inference_state=self.state,
frame_idx=self.current_frame_idx,
obj_id=self.obj_id,
points=points,
labels=labels,
)
if out_mask_logits is not None and len(out_mask_logits) > 0:
self.out_mask_logits = (
out_mask_logits[0]
if isinstance(out_mask_logits, list)
else out_mask_logits
)
# Store mask for this frame
self.frame_masks[self.current_frame_idx] = self.out_mask_logits
# Draw tracking visualization with enhanced mask
frame_with_points = self._draw_tracking(frame_with_points)
# Draw point on top of mask
cv2.circle(
frame_with_points, (int(x), int(y)), 5, (255, 255, 0), -1
) # Yellow dot
cv2.circle(frame_with_points, (int(x), int(y)), 7, (0, 0, 0), 1) # Black border
return frame_with_points
def propagate_video(self):
if self.state is None:
return None
output_frames = self.video_frames.copy()
# Store all masks for smoother visualization
all_masks = []
# First pass: collect all masks
with torch.inference_mode():
for frame_idx, obj_ids, masks in self.predictor.propagate_in_video(
self.state,
start_frame_idx=0,
reverse=False,
):
if masks is not None and len(masks) > 0:
mask = masks[0] if isinstance(masks, list) else masks
all_masks.append((frame_idx, mask))
# Store mask for each frame
self.frame_masks[frame_idx] = mask
# Second pass: apply visualization with temporal smoothing
for i, frame in enumerate(output_frames):
frame = frame.copy()
# Find masks for this frame
current_masks = [m[1] for m in all_masks if m[0] == i]
if current_masks:
self.out_mask_logits = current_masks[0]
# Get binary mask and ensure correct dimensions
mask_np = (current_masks[0] > 0.0).cpu().numpy()
mask_np = self._handle_mask_dimensions(mask_np)
# Convert to proper format for OpenCV
mask_np = mask_np.astype(np.uint8)
# Enhanced visualization for video
frame = self._draw_tracking(frame, alpha=0.6)
# Create glowing effect
try:
# Create kernel for dilation
kernel = np.ones((5, 5), np.uint8)
# Dilate mask for glow effect
dilated_mask = cv2.dilate(mask_np, kernel, iterations=2)
# Create glow overlay
glow = frame.copy()
glow[dilated_mask > 0] = [0, 255, 255] # Yellow glow
# Blend glow with frame
frame = cv2.addWeighted(frame, 0.7, glow, 0.3, 0)
except cv2.error as e:
print(
f"Warning: Could not apply glow effect. Mask shape: {mask_np.shape}, Frame shape: {frame.shape}"
)
# Continue without glow effect if there's an error
output_frames[i] = frame
# Save as video with higher quality
temp_output = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
height, width = output_frames[0].shape[:2]
# Use higher bitrate for better quality
writer = cv2.VideoWriter(
temp_output, cv2.VideoWriter_fourcc(*"mp4v"), 30, (width, height), True
)
for frame in output_frames:
writer.write(frame)
writer.release()
return temp_output
def _handle_mask_dimensions(self, mask_np):
"""Helper function to handle various mask dimensions"""
# Handle 4D tensor (1, 1, H, W)
if len(mask_np.shape) == 4:
mask_np = mask_np[0, 0]
# Handle 3D tensor (1, H, W) or (H, W, 1)
elif len(mask_np.shape) == 3:
if mask_np.shape[0] == 1: # (1, H, W) format
mask_np = mask_np[0]
elif mask_np.shape[2] == 1: # (H, W, 1) format
mask_np = mask_np[:, :, 0]
return mask_np
def _draw_tracking(self, frame, alpha=0.5):
"""Draw object mask on frame with enhanced visualization"""
if self.out_mask_logits is not None:
# Convert logits to binary mask
if isinstance(self.out_mask_logits, list):
mask = self.out_mask_logits[0]
else:
mask = self.out_mask_logits
# Get binary mask and handle dimensions
mask_np = (mask > 0.0).cpu().numpy()
mask_np = self._handle_mask_dimensions(mask_np)
if mask_np.shape[:2] == frame.shape[:2]:
# Create a red overlay for the mask
overlay = frame.copy()
overlay[mask_np > 0] = [0, 0, 255] # BGR format: Red color
# Add a border around the mask for better visibility
contours, _ = cv2.findContours(
mask_np.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
# Draw thicker contours for better visibility
cv2.drawContours(
overlay, contours, -1, (0, 255, 255), 3
) # Thicker yellow border
# Add a second contour for emphasis
cv2.drawContours(
frame, contours, -1, (255, 255, 0), 1
) # Thin bright border
# Blend the overlay with original frame
frame = cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
return frame
def create_interface():
tracker = VideoTracker()
with gr.Blocks() as interface:
gr.Markdown("# Object Tracking with SAM2")
gr.Markdown("Upload a video and click on objects to track them")
with gr.Row():
with gr.Column(scale=2):
video_input = gr.Video(label="Input Video")
image_output = gr.Image(label="Current Frame", interactive=True)
frame_slider = gr.Slider(
minimum=0,
maximum=0,
step=1,
value=0,
label="Frame Selection",
interactive=True,
)
with gr.Column(scale=1):
propagate_btn = gr.Button("Propagate Through Video", variant="primary")
video_output = gr.Video(label="Output Video")
video_input.change(
fn=tracker.load_video,
inputs=[video_input],
outputs=[image_output, frame_slider],
)
frame_slider.change(
fn=tracker.update_frame,
inputs=[frame_slider],
outputs=[image_output],
)
image_output.select(
fn=tracker.add_point,
inputs=[image_output],
outputs=[image_output],
)
propagate_btn.click(
fn=tracker.propagate_video,
inputs=[],
outputs=[video_output],
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch(share=True)
|