Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import spacy | |
left_text = st.text_area('First', 'This is a test') | |
right_text = st.text_area('Second', 'This is another test') | |
st.toast("Loading spacy...") | |
nlp = spacy.load("en_core_web_sm") | |
st.toast("Loading rufimelo/Legal-BERTimbau-sts-base...") | |
model = SentenceTransformer("rufimelo/Legal-BERTimbau-sts-base") | |
st.toast("Legal-BERTimbau-sts-base: computing embeddings...") | |
embeddings = model.encode([left_text, right_text]) | |
st.toast("Legal-BERTimbau-sts-base: computing similarity...") | |
similarity = cosine_similarity(embeddings[: 1], embeddings[1 :]) | |
st.info("Legal-BERTimbau-sts-base: score ->") | |
st.dataframe(similarity) | |
st.toast("Loading nlpaueb/legal-bert-base-uncased...") | |
model = SentenceTransformer("nlpaueb/legal-bert-base-uncased") | |
st.toast("legal-bert-base-uncased: computing embeddings...") | |
embeddings = model.encode([left_text, right_text]) | |
st.toast("legal-bert-base-uncased: computing similarity...") | |
similarity = cosine_similarity(embeddings[: 1], embeddings[1 :]) | |
st.info("legal-bert-base-uncased: score ->") | |
st.dataframe(similarity) | |