File size: 15,408 Bytes
8bf58fb
806b207
 
5011a98
4dfa7ec
806b207
 
 
 
 
5011a98
806b207
 
907b68f
806b207
 
 
 
 
 
762e024
 
806b207
 
 
 
 
 
 
deb59b3
806b207
 
deb59b3
806b207
 
 
 
 
762e024
 
 
 
806b207
762e024
 
806b207
 
 
8bf58fb
806b207
 
 
 
 
 
762e024
0ddb8ec
044b65e
806b207
 
 
762e024
0ddb8ec
044b65e
deb59b3
806b207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb59b3
0ddb8ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb59b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762e024
 
 
044b65e
762e024
044b65e
762e024
044b65e
762e024
044b65e
1e07071
044b65e
 
1e07071
044b65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e07071
 
044b65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf58fb
044b65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import gradio as gr


import os
hftoken = os.environ["hftoken"]

from langchain_huggingface import HuggingFaceEndpoint

repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
llm = HuggingFaceEndpoint(repo_id = repo_id, max_new_tokens = 128, temperature = 0.7, huggingfacehub_api_token = hftoken)

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
chain = prompt | llm | StrOutputParser()

from langchain.document_loaders.csv_loader import CSVLoader

loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
data = loader.load()

from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_huggingface.embeddings import HuggingFaceEndpointEmbeddings

# CHECK MTEB LEADERBOARD & FIND BEST EMBEDDING MODEL
model = "BAAI/bge-m3"
embeddings = HuggingFaceEndpointEmbeddings(model = model)

vectorstore = Chroma.from_documents(documents = data, embedding = embeddings)
retriever = vectorstore.as_retriever()

# from langchain.prompts import PromptTemplate

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("""Given the following context and a question, generate an answer based on the context only.

In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

CONTEXT: {context}

QUESTION: {question}""")

from langchain_core.runnables import RunnablePassthrough

rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

# Define the chat response function
def chatresponse(message, history):
    output = rag_chain.invoke(message)
    response = output.split('ANSWER: ')[-1].strip()
    print(response)

# Launch the Gradio chat interface
gr.ChatInterface(chatresponse).launch()

# import gradio as gr
# from langchain_community.document_loaders import CSVLoader  # Changed import
# from langchain_community.vectorstores import FAISS  # Changed import
# from langchain.prompts import PromptTemplate
# from langchain.chains import RetrievalQA
# from langchain.llms import HuggingFaceLLM  # Adjusted for correct instantiation
# import warnings
# from huggingface_hub import login
# import os
# from transformers import pipeline

# # Initialize the LLM using pipeline
# llm = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct")  # Adjusted initialization

# # Load CSV file
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column='prompt')
# data = loader.load()

# # Suppress warnings
# warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
# warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")

# # Embedding model
# model_name = "BAAI/bge-m3"
# instructor_embeddings = HuggingFaceLLM(model_name=model_name)  # Adjusted for correct instantiation

# # Create FAISS vector store from documents
# vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
# retriever = vectordb.as_retriever()

# # Define the prompt template
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
# CONTEXT: {context}
# QUESTION: {question}"""

# PROMPT = PromptTemplate(
#     template=prompt_template, input_variables=["context", "question"]
# )

# # Initialize the RetrievalQA chain
# chain = RetrievalQA.from_chain_type(llm=llm,  # Adjusted initialization
#                                     chain_type="stuff",
#                                     retriever=retriever,
#                                     input_key="query",
#                                     return_source_documents=True,
#                                     chain_type_kwargs={"prompt": PROMPT})

# # Define the chat response function
# def chatresponse(message, history):
#     output = chain(message)
#     return output['result']

# # Launch the Gradio chat interface
# gr.ChatInterface(chatresponse).launch()


# import gradio as gr
# # from langchain.llms import GooglePalm
# from langchain_google_genai import GoogleGenerativeAI
# from langchain.document_loaders.csv_loader import CSVLoader
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.prompts import PromptTemplate
# from langchain.chains import RetrievalQA
# import warnings
# from huggingface_hub import login
# import os


# from transformers import pipeline
# llm = pipeline("feature-extraction", model="mixedbread-ai/mxbai-embed-large-v1") 

# # from transformers import AutoModel
# # llm = AutoModel.from_pretrained("Alibaba-NLP/gte-large-en-v1.5", trust_remote_code=True) 

# # LLAMA
# # from transformers import AutoModelForCausalLM, AutoTokenizer
# # from transformers import pipeline

# # hf_token = os.environ['llama_token']

# # login(token=hf_token)

# # llm = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct")
# # llm = pipeline("text-generation", model = "meta-llama/Meta-Llama-3-70B-Instruct")

# # MISTRAL
# # llm = pipeline("text-generation", model="mistralai/Mixtral-8x22B-Instruct-v0.1")


# # TO USE GOOGLE MODELS
# # api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"

# # llm = GoogleGenerativeAI(model="models/text-bison-001", google_api_key=api_key)
# # llm = GooglePalm(google_api_key = api_key, temperature=0.7)

# # LOADING CSV FILE
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()

# # SUPPRESSING WARNINGS
# warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
# warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")


# # EMBEDDING MODEL
# model_name = "BAAI/bge-m3"
# instructor_embeddings = HuggingFaceEmbeddings(model_name=model_name)

# # Create FAISS vector store from documents
# vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
# retriever = vectordb.as_retriever()

# prompt_template = """Given the following context and a question, generate an answer based on the context only.

# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

# CONTEXT: {context}

# QUESTION: {question}"""

# PROMPT = PromptTemplate(
#     template = prompt_template, input_variables = ["context", "question"]
# )


# chain = RetrievalQA.from_chain_type(llm = llm,
#             chain_type="stuff",
#             retriever=retriever,
#             input_key="query",
#             return_source_documents=True,
#             chain_type_kwargs = {"prompt": PROMPT})

# def chatresponse(message, history):
#     output = chain(message)
#     return output['result']

# gr.ChatInterface(chatresponse).launch()



# import gradio as gr

# # from langchain.llms import GooglePalm
# # from langchain.document_loaders.csv_loader import CSVLoader
# # from langchain_huggingface import HuggingFaceEmbeddings
# # from langchain.vectorstores import FAISS


# from langchain_community.llms import GooglePalm
# from langchain_community.document_loaders import CSVLoader
# from langchain_community.vectorstores import FAISS
# from langchain_huggingface import HuggingFaceEmbeddings


# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"

# llm = GooglePalm(google_api_key = api_key, temperature=0.7)


# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()


# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)

# retriever = vectordb.as_retriever()

# from langchain.prompts import PromptTemplate

# prompt_template = """Given the following context and a question, generate an answer based on the context only.

# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

# CONTEXT: {context}

# QUESTION: {question}"""

# PROMPT = PromptTemplate(
#     template = prompt_template, input_variables = ["context", "question"]
# )

# from langchain.chains import RetrievalQA

# chain = RetrievalQA.from_chain_type(llm = llm,
#             chain_type="stuff",
#             retriever=retriever,
#             input_key="query",
#             return_source_documents=True,
#             chain_type_kwargs = {"prompt": PROMPT})

# def chatresponse(message, history):
#     output = chain(message)
#     return output['result']

# gr.ChatInterface(chatresponse).launch()


# import gradio as gr
# from langchain.llms import GooglePalm

# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"

# llm = GooglePalm(google_api_key = api_key, temperature=0.7)

# from langchain.document_loaders.csv_loader import CSVLoader

# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()

# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS

# # instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# # instructor_embeddings = HuggingFaceEmbeddings()

# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)

# # e = embeddings_model.embed_query("What is your refund policy")

# retriever = vectordb.as_retriever()

# from langchain.prompts import PromptTemplate

# prompt_template = """Given the following context and a question, generate an answer based on the context only.

# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

# CONTEXT: {context}

# QUESTION: {question}"""

# PROMPT = PromptTemplate(
#     template = prompt_template, input_variables = ["context", "question"]
# )

# from langchain.chains import RetrievalQA

# chain = RetrievalQA.from_chain_type(llm = llm,
#             chain_type="stuff",
#             retriever=retriever,
#             input_key="query",
#             return_source_documents=True,
#             chain_type_kwargs = {"prompt": PROMPT})

# # Load your LLM model and necessary components
# # Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown
# # For this example, we'll assume the model and chain function are already available

# def chatbot(query):
#     response = chain(query)
#     # Extract the 'result' part of the response
#     result = response.get('result', 'Sorry, I could not find an answer.')
#     return result

# # Define the Gradio interface
# iface = gr.Interface(
#     fn=chatbot,  # Function to call
#     inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."),  # Input type
#     outputs="text",  # Output type
#     title="Hugging Face LLM Chatbot",
#     description="Ask any question related to the documents and get an answer from the LLM model.",
# )

# # Launch the interface
# iface.launch()

# # Save this file as app.py and push it to your Hugging Face Space repository

# # import gradio as gr

# # def greet(name, intensity):
# #     return "Hello, " + name + "!" * int(intensity)

# # demo = gr.Interface(
# #     fn=greet,
# #     inputs=["text", "slider"],
# #     outputs=["text"],
# # )

# # demo.launch()


# # import gradio as gr
# # from huggingface_hub import InferenceClient

# # """
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# # """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# # def respond(
# #     message,
# #     history: list[tuple[str, str]],
# #     system_message,
# #     max_tokens,
# #     temperature,
# #     top_p,
# # ):
# #     messages = [{"role": "system", "content": system_message}]

# #     for val in history:
# #         if val[0]:
# #             messages.append({"role": "user", "content": val[0]})
# #         if val[1]:
# #             messages.append({"role": "assistant", "content": val[1]})

# #     messages.append({"role": "user", "content": message})

# #     response = ""

# #     for message in client.chat_completion(
# #         messages,
# #         max_tokens=max_tokens,
# #         stream=True,
# #         temperature=temperature,
# #         top_p=top_p,
# #     ):
# #         token = message.choices[0].delta.content

# #         response += token
# #         yield response

# # """
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# # """
# # demo = gr.ChatInterface(
# #     respond,
# #     additional_inputs=[
# #         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# #         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# #         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# #         gr.Slider(
# #             minimum=0.1,
# #             maximum=1.0,
# #             value=0.95,
# #             step=0.05,
# #             label="Top-p (nucleus sampling)",
# #         ),
# #     ],
# # )


# # if __name__ == "__main__":
# #     demo.launch()