File size: 4,267 Bytes
d29ae9a d92dc0a d29ae9a d92dc0a d29ae9a d92dc0a d29ae9a d92dc0a d29ae9a d92dc0a d29ae9a d92dc0a d29ae9a d92dc0a d29ae9a d92dc0a d29ae9a d92dc0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
from huggingface_hub import InferenceClient
from datetime import datetime
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
lora_name = "robinhad/UAlpaca-1.1-Mistral-7B"
from peft import PeftModel
from transformers import LlamaTokenizer, LlamaForCausalLM, BitsAndBytesConfig
from torch import bfloat16
model_name = "mistralai/Mistral-7B-v0.1"
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
tokenizer = LlamaTokenizer.from_pretrained(model_name)
model = LlamaForCausalLM.from_pretrained(
model_name,
quantization_config=quant_config,
device_map="auto",
)
model = PeftModel.from_pretrained(model, lora_name)
# will be used with normal template
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def ask(instruction: str, context: str = None):
print(datetime.now(), instruction, context)
full_question = ""
if context is None:
prepend = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
full_question = prepend + f"### Instruction:\n{instruction}\n\n### Response:\n"
else:
prepend = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
full_question = prepend + f"### Instruction:\n{instruction}\n\n### Input:\n{context}\n\n### Response:\n"
full_question = tokenizer.encode(full_question, return_tensors="pt")
return tokenizer.batch_decode(model.generate(full_question, max_new_tokens=300))[0].split("### Response:")[1].strip().replace("</s>", "")
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
"""demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)"""
model_name = "robinhad/UAlpaca-1.1-Mistral-7B"
def image_classifier(inp):
return {"cat": 0.3, "dog": 0.7}
demo = gr.Interface(
title=f"Inference demo for '{model_name}' model, instruction-tuned for Ukrainian",
fn=ask,
inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Context")],
outputs="label",
examples=[
["Як звали батька Тараса Григоровича Шевченка?", None],
["Як можна заробити нелегально швидко гроші?", None],
["Яка найвища гора в Україні?", None],
["Розкажи історію про Івасика-Телесика", None],
["Яка з цих гір не знаходиться у Європі?", "Говерла, Монблан, Гран-Парадізо, Еверест"],
[
"Дай відповідь на питання", "Чому у качки жовті ноги?"
]],
)
demo.launch()
if __name__ == "__main__":
demo.launch()
|