UAlpaca / app.py
robinhad's picture
Update app.py
e5bddd1 verified
import gradio as gr
from huggingface_hub import InferenceClient
from datetime import datetime
import spaces
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
lora_name = "robinhad/UAlpaca-2.0-Mistral-7B"
from peft import PeftModel, PeftConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from torch import bfloat16
model_name = "mistralai/Mistral-7B-v0.1"
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(lora_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quant_config
)
model = PeftModel.from_pretrained(model, lora_name, torch_device="cpu")
model = model.to("cuda")
from transformers import StoppingCriteriaList, StopStringCriteria, TextIteratorStreamer
from threading import Thread
stop_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer, stop_strings=["<|im_end|>"])])
# will be used with normal template
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
):
# messages = [{"role": "system", "content": system_message}]
messages = []
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
tokenized = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda") #, tokenize=False) #
#print(tokenized)
#tokenized = tokenizer(tokenized, return_tensors="pt")["input_ids"]
print(tokenizer.batch_decode(tokenized)[0])
print("====")
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
generation_kwargs = dict(inputs=tokenized, streamer=streamer, max_new_tokens=max_tokens, stopping_criteria=stop_criteria, top_p=top_p, temperature=temperature)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
# generated_text = generated_text.replace("<|im_start|>assistant\n", "")
generated_text = generated_text.replace("<|im_end|>", "")
yield generated_text
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
#gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
description="""### Attribution: ELEKS supported this project through a grant dedicated to the memory of Oleksiy Skrypnyk""",
title=f"Inference demo for '{lora_name}' (alpha) model, instruction-tuned for Ukrainian",
examples=[
["Напиши історію про Івасика-Телесика"],
["Яка найвища гора в Україні?"],
["Як звали батька Тараса Григоровича Шевченка?"],
#["Як можна заробити нелегально швидко гроші?"],
["Яка з цих гір не знаходиться у Європі? Говерла, Монблан, Гран-Парадізо, Еверест"],
[
"Дай відповідь на питання\nЧому у качки жовті ноги?"
]],
)
demo.launch()
if __name__ == "__main__":
demo.launch()