Spaces:
Sleeping
Sleeping
File size: 6,771 Bytes
199b89f 60c33f5 199b89f 60c33f5 199b89f b65b1b9 199b89f 570bdfc 83a3f82 570bdfc 83a3f82 570bdfc 83a3f82 570bdfc 83a3f82 199b89f 24d48f2 570bdfc 24d48f2 199b89f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import streamlit as st
import streamlit as st
import random
import requests
import pandas as pd
import pickle
import joblib
import re
import pandas as pd
import numpy as np
import re
import string
from string import digits
from sklearn import metrics
import pickle
import time
from sentence_transformers import SentenceTransformer
# List of URLs of background images
background_image_urls = [
'https://www.canarahsbclife.com/content/dam/choice/blog-inner/images/what-is-insurance-meaning-and-benefits-of-insurance.jpg',
'https://www.avivaindia.com/sites/default/files/Types-of-Insurance.jpg',
'https://images.livemint.com/img/2022/09/01/1600x900/Health_Insurance_1662032759457_1662032759610_1662032759610.jpg',
]
# Randomly select a background image URL
selected_image_url = random.choice(background_image_urls)
# Fetch the selected image from the URL
response = requests.get(selected_image_url)
if response.status_code == 200:
# Set the background image using CSS
background_style = f"""
<style>
body {{
background-image: url('{selected_image_url}');
background-size: cover;
}}
</style>
"""
# Display the random background image
st.markdown(background_style, unsafe_allow_html=True)
else:
st.warning("Failed to fetch the background image.")
# Create a Streamlit app
st.title("Gallagher : Text Classification and Excel Processing App")
# File upload for Excel file
uploaded_file = st.file_uploader("Upload an Excel file", type=["xlsx"])
import base64
from io import BytesIO
def get_binary_file_downloader_link(file_data, file_name, link_text):
# Write the DataFrame to an in-memory Excel file
excel_buffer = BytesIO()
file_data.to_excel(excel_buffer, index=False, engine='xlsxwriter')
# Create a base64-encoded string of the Excel file's contents
b64 = base64.b64encode(excel_buffer.getvalue()).decode()
# Generate the download link
href = f'<a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" download="{file_name}">{link_text}</a>'
return href
def pre_processing(data_frame):
# Lowercase all characters
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: x.lower())
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"won\'t", "will not", x))
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"can\'t", "can not", x))
# general
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"n\'t", " not", x))
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'re", " are", x))
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'s", " is", x))
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'d", " would", x))
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'ll", " will", x))
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'t", " not", x))
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'ve", " have", x))
data_frame['Claim Description'] = data_frame['Claim Description'].apply(lambda x: re.sub(r"\'m", " am", x))
# Remove quotes
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: re.sub("'", '', x))
exclude = set(string.punctuation) # Set of all special characters
# Remove all the special characters
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: ''.join(ch for ch in x if ch not in exclude))
# Remove all numbers from text
remove_digits = str.maketrans('', '', digits)
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: x.translate(remove_digits))
# remove extra
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: re.sub('[-_.:;\[\]\|,]', '', x))
# Remove extra spaces
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: x.strip())
data_frame['Claim Description']=data_frame['Claim Description'].apply(lambda x: re.sub(" +", " ", x))
return data_frame
step_1_model_path = "output/lr_step_1.pickle"
step_2_model_path = "output/lr_basemodel_step_2.pickle"
step_1_model = pickle.load(open(step_1_model_path, 'rb'))
step_2_model = pickle.load(open(step_2_model_path, 'rb'))
count_vector_step_1 = joblib.load("output/count_vector_step_1.pkl")
count_vector_step_2 = joblib.load("output/count_vector_step_2.pkl")
fewer_class_dict = joblib.load("output/fewer_class_dictionary.pkl")
acc_src_model = joblib.load("output/bert_acc_src.pickle")
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def predict(model_1,model_2,final_dict,query):
# predict
test_1 = count_vector_step_1.transform([query])
y_pred = model_1.predict(test_1)
if y_pred == 'med':
test_2 = count_vector_step_2.transform([query])
y_pred = model_2.predict(test_2)
else:
y_pred = y_pred
if query in final_dict.keys():
y_pred = final_dict[query]
else:
y_pred = y_pred
return y_pred[0]
if uploaded_file is not None:
# Read the uploaded Excel file
excel_data = pd.read_excel(uploaded_file)
final_result= []
print('Preprocessing Started')
test_data = pre_processing(excel_data)
x_test = test_data['Claim Description']
print('Prediction Started')
for query in x_test:
result = predict(step_1_model,step_2_model,fewer_class_dict,query)
final_result.append(result)
excel_data['predicted_coverage_code'] = final_result
X_bert_enc = model.encode(x_test.values, show_progress_bar=True,)
accident_source_pred = acc_src_model.predict(X_bert_enc)
excel_data['predicted_accident_src'] = accident_source_pred
st.dataframe(excel_data) # Display the processed data
link = get_binary_file_downloader_link(excel_data, 'my_processed_file.xlsx', 'Download Processed Data')
st.markdown(link, unsafe_allow_html=True)
# Create a new Excel file with the processed data
output_filename = "processed_data.xlsx"
excel_data.to_excel(output_filename, index=False)
# Display a link to download the processed file
st.markdown(f"Download Processed Data: [Processed Data](data:{output_filename})")
# Add a placeholder for displaying "Done" after processing
if uploaded_file is not None:
st.write("Done")
|