Spaces:
Running
Running
import os | |
os.system('pip install -q git+https://github.com/huggingface/transformers.git') | |
os.system('pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM | |
import torch | |
import gradio as gr | |
import re | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class GUI: | |
def query(self,query,modelo="flan-t5-small",tokens=100): | |
options="" | |
tok_len=tokens | |
t5query = f"""Question: "{query}" Context: {options}""" | |
if (modelo=="flan-t5-small" or modelo=="flan-t5-large"): | |
tokenizer = AutoTokenizer.from_pretrained("google/{}".format(modelo)) | |
model = AutoModelForSeq2SeqLM.from_pretrained("google/{}".format(modelo)).to(device) | |
inputs = tokenizer(t5query, return_tensors="pt").to(device) | |
outputs = model.generate(**inputs, max_new_tokens=tok_len) | |
else: | |
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M").to(device) | |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M") | |
input_ids = tokenizer(t5query, return_tensors="pt").to(device) | |
outputs = model.generate(**input_ids, do_sample=True, max_length=tok_len) | |
generation=tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
return '\n'.join(generation) | |
def begin(self,question,modelo,tokens): | |
results = app.query(question,tokens) | |
return results | |
app = GUI() | |
title = "Get answers with questions with Flan-T5" | |
description = "Results will show up in a few seconds." | |
article="More info <a href='https://ruslanmv.com/'>ruslanmv.com</a><br>" | |
css = """.output_image, .input_image {height: 600px !important}""" | |
iface = gr.Interface(fn=app.begin, | |
inputs=[ gr.Textbox(label="Question"), | |
gr.Radio(["flan-t5-small", "flan-t5-large","gpt-neo-125M"],label="Model",value="flan-t5-small"), | |
gr.Slider(30, 200, value=100, step = 1,label="Max Tokens"),], | |
outputs = gr.Text(label="Answer Summary"), | |
title=title, | |
description=description, | |
article=article, | |
css=css, | |
analytics_enabled = True | |
,enable_queue=True) | |
iface.launch(inline=False, share=False, debug=False) |