File size: 17,583 Bytes
f50f696 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import scipy.stats as st
from train import Losses
import argparse
import os
from tqdm import tqdm
import time
import torch
import numpy as np
import matplotlib.pyplot as plt
import pyro
import pyro.distributions as dist
from pyro.nn import PyroModule, PyroSample
import torch.nn as nn
from pyro.infer.autoguide import AutoDiagonalNormal
from pyro.infer import SVI, Trace_ELBO, Predictive, MCMC, NUTS
from pyro import infer
import matplotlib.gridspec as gridspec
import os.path
import glob
from train import train, get_weighted_single_eval_pos_sampler
import priors
import encoders
from pyro.infer import SVGD, RBFSteinKernel
class CausalModel(PyroModule):
def __init__(self, model_spec, device='cuda'):
super().__init__()
self.device = device
self.num_features = model_spec['num_features']
mu, sigma = torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)
self.fc1 = PyroModule[nn.Linear](self.num_features, model_spec['embed'])
self.drop = pyro.sample('drop', dist.Categorical(probs=torch.tensor([0.5, 0.5]).expand([model_spec['embed'], self.num_features, 2]))).float()
self.fc1.weight = PyroSample(dist.Normal(mu, 0.0000001+self.drop).expand([model_spec['embed'], self.num_features]).to_event(2))
self.fc1.bias = PyroSample(dist.Normal(mu, sigma).expand([model_spec['embed']]).to_event(1))
self.fc2 = PyroModule[nn.Linear](model_spec['embed'], 2)
self.fc2.weight = PyroSample(dist.Normal(mu, sigma).expand([2, model_spec['embed']]).to_event(2))
self.fc2.bias = PyroSample(dist.Normal(mu, sigma).expand([2]).to_event(1))
self.model = torch.nn.Sequential(self.fc1, self.fc2)
self.to(self.device)
def forward(self, x=None, y=None, seq_len=1):
if x is None:
with pyro.plate("x_plate", seq_len):
d_ = dist.Normal(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)).expand(
[self.num_features]).to_event(1)
x = pyro.sample("x", d_)
out = self.model(x)
mu = out.squeeze()
softmax = torch.nn.Softmax(dim=1)
# sigma = pyro.sample("sigma", dist.Uniform(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)))
with pyro.plate("data", out.shape[0]):
# d_ = dist.Normal(mu, sigma)
# obs = pyro.sample("obs", d_, obs=y)
s = softmax(mu)
obs = pyro.sample('obs', dist.Categorical(probs=s), obs=y).float()
return x, obs
class BayesianModel(PyroModule):
def __init__(self, model_spec, device='cuda'):
super().__init__()
self.device = device
self.num_features = model_spec['num_features']
mu, sigma = torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)
self.fc1 = PyroModule[nn.Linear](self.num_features, model_spec['embed'])
self.fc1.weight = PyroSample(
dist.Normal(mu, sigma).expand([model_spec['embed'], self.num_features]).to_event(2))
self.fc1.bias = PyroSample(dist.Normal(mu, sigma).expand([model_spec['embed']]).to_event(1))
self.fc2 = PyroModule[nn.Linear](model_spec['embed'], 2)
self.fc2.weight = PyroSample(dist.Normal(mu, sigma).expand([2, model_spec['embed']]).to_event(2))
self.fc2.bias = PyroSample(dist.Normal(mu, sigma).expand([2]).to_event(1))
self.model = torch.nn.Sequential(self.fc1, self.fc2)
self.to(self.device)
def forward(self, x=None, y=None, seq_len=1):
if x is None:
with pyro.plate("x_plate", seq_len):
d_ = dist.Normal(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)).expand(
[self.num_features]).to_event(1)
x = pyro.sample("x", d_)
out = self.model(x)
mu = out.squeeze()
softmax = torch.nn.Softmax(dim=1)
# sigma = pyro.sample("sigma", dist.Uniform(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)))
with pyro.plate("data", out.shape[0]):
# d_ = dist.Normal(mu, sigma)
# obs = pyro.sample("obs", d_, obs=y)
s = softmax(mu)
obs = pyro.sample('obs', dist.Categorical(probs=s), obs=y).float()
return x, obs
def get_transformer_config(model_spec):
return {'lr': 2.006434218345026e-05
, 'epochs': 400
, 'dropout': 0.0
, 'emsize': 256
, 'batch_size': 256
, 'nlayers': 5
, 'num_outputs': 1
, 'num_features': model_spec['num_features']
, 'steps_per_epoch': 100
, 'nhead': 4
, 'dropout': 0.0
, 'seq_len': model_spec['seq_len']
, 'nhid_factor': 2}
def get_model(model_generator, config, should_train=True, device='cuda'):
epochs = 0 if not should_train else config['epochs']
model = train(priors.pyro.DataLoader
, Losses.bce
, encoders.Linear
, emsize=config['emsize']
, nhead=config['nhead']
, y_encoder_generator=encoders.Linear
, pos_encoder_generator=None
, batch_size=config['batch_size']
, nlayers=config['nlayers']
, nhid=config['emsize'] * config['nhid_factor']
, epochs=epochs
, warmup_epochs=config['epochs'] // 4
, bptt=config['seq_len']
, gpu_device=device
, dropout=config['dropout']
, steps_per_epoch=config['steps_per_epoch']
, single_eval_pos_gen=get_weighted_single_eval_pos_sampler(100)
, extra_prior_kwargs_dict={
'num_outputs': config['num_outputs']
, 'num_features': config['num_features']
, 'canonical_args': None
, 'fuse_x_y': False
, 'model': model_generator
}
, lr=config['lr']
, verbose=True)
return model
def plot_features(data, targets):
fig2 = plt.figure(constrained_layout=True, figsize=(12, 12))
spec2 = gridspec.GridSpec(ncols=data.shape[1], nrows=data.shape[1], figure=fig2)
for d in range(0, data.shape[1]):
for d2 in range(0, data.shape[1]):
sub_ax = fig2.add_subplot(spec2[d, d2])
sub_ax.scatter(data[:, d].detach().cpu().numpy(), data[:, d2].detach().cpu().numpy(),
c=targets[:].detach().cpu().numpy())
def evaluate_preds(preds, y_test):
preds_hard = preds['obs'] > 0.5 # TODO: 0.5 or 0
acc = (preds_hard == y_test).float().mean()
means = preds_hard.float().mean(axis=0)
# var = preds['obs'].var(axis=0)
nll = nn.BCELoss()(means.float(), y_test.float())
mse = Losses.mse(means, y_test).mean()
return acc, nll, mse
def load_results(path, task='steps'):
results_nll = []
results_acc = []
times = []
samples_list = []
files = glob.glob(f'/home/hollmann/prior-fitting/{path}_*.npy')
for file in files:
print(file)
with open(file, 'rb') as f:
if task == 'steps':
nll, acc, elapsed = np.load(f, allow_pickle=True)
samples_list += [file]
else:
samples, nll, acc, elapsed = np.load(f, allow_pickle=True)
samples_list += [samples]
times += [elapsed]
results_nll += [nll]
results_acc += [acc]
results_acc = np.array(results_acc)
results_nll = np.array(results_nll)
times = np.array(times)
files = np.array(files)
samples = np.array(samples_list)
means = np.array([compute_mean_and_conf_interval(results_nll[n, :])[0] for n in range(0, results_nll.shape[0])])
conf = np.array([compute_mean_and_conf_interval(results_nll[n, :])[1] for n in range(0, results_nll.shape[0])])
if task == 'steps':
sorter = np.argsort(times, axis=0)
else:
sorter = np.argsort(samples, axis=0)
results_nll, results_acc, times, files, samples, means, conf = results_nll[sorter], results_acc[sorter], times[sorter], files[sorter], samples[sorter], means[sorter], conf[sorter]
return files, times, samples, means, conf
def plot_with_confidence_intervals(ax_or_pyplot, x, mean, confidence, **common_kwargs):
ax_or_pyplot.plot(x,mean,**common_kwargs)
if 'label' in common_kwargs:
common_kwargs.pop('label')
if 'marker' in common_kwargs:
common_kwargs.pop('marker')
ax_or_pyplot.fill_between(x, (mean-confidence), (mean+confidence), alpha=.1, **common_kwargs)
def compute_mean_and_conf_interval(accuracies, confidence=.95):
accuracies = np.array(accuracies)
n = len(accuracies)
m, se = np.mean(accuracies), st.sem(accuracies)
h = se * st.t.ppf((1 + confidence) / 2., n - 1)
return m, h
def generate_toy_data(model, bptt, device='cpu'):
n_samples = 100
X_list, y_list = [], []
torch.manual_seed(0)
for _ in range(0, n_samples):
X_sample, y_sample = model(seq_len=bptt)
X_list += [X_sample]
y_list += [y_sample]
X = torch.stack(X_list, 0)
y = torch.stack(y_list, 0)
# y = (y > 0).float()
return X.to(device), y.to(device)
def eval_svi(X, y, device, model_sampler, training_samples_n, num_train_steps, num_pred_samples, lr=1e-3, num_particles=1, svgd=False):
X_test, y_test = X[:, training_samples_n:], y[:, training_samples_n:]
X_train, y_train = X[:, 0:training_samples_n], y[:, 0:training_samples_n]
nll_list = []
acc_list = []
for sample_id in tqdm(list(range(0, X_test.shape[0]))):
model = model_sampler()
guide = AutoDiagonalNormal(model).to(device)
adam = pyro.optim.Adam({"lr": lr})
svi = SVI(model, guide, adam, loss=Trace_ELBO(num_particles=num_particles))
if svgd:
kernel = RBFSteinKernel()
svi = SVGD(model, kernel, adam, num_particles=50, max_plate_nesting=0)
pyro.clear_param_store()
X_test_sample, y_test_sample, X_train_sample, y_train_sample = X_test[sample_id], y_test[sample_id], X_train[
sample_id], y_train[sample_id]
acc, nll, mse = 0.0, 0.0, 0.0
# bar = tqdm(list(range(num_train_steps)))
bar = list(range(num_train_steps))
for epoch in bar:
loss = svi.step(X_train_sample, y_train_sample)
# if epoch % 100 == 1:
# bar.set_postfix(loss=f'{loss / X_train_sample.shape[0]:.3f}', test_nll=f'{nll:.3f}', test_acc=f'{acc:.3f}')
predictive = Predictive(model, guide=guide, num_samples=num_pred_samples)
preds = predictive(X_test_sample)
acc, nll, mse = evaluate_preds(preds, y_test_sample)
nll_list += [nll.detach().cpu().numpy()]
acc_list += [acc.detach().cpu().numpy()]
return np.array(nll_list), np.array(acc_list)
def eval_mcmc(X, y, device, model_sampler, training_samples_n, warmup_steps, num_pred_samples):
X_test, y_test = X[:, training_samples_n:].to(device), y[:, training_samples_n:].to(device)
X_train, y_train = X[:, 0:training_samples_n].to(device), y[:, 0:training_samples_n].to(device)
acc_list, nll_list = [], []
for sample_id in tqdm(list(range(0, X_test.shape[0]))):
X_test_sample, y_test_sample, X_train_sample, y_train_sample = X_test[sample_id], y_test[sample_id], X_train[
sample_id], y_train[sample_id]
model = model_sampler()
mcmc = MCMC(NUTS(model), num_samples=num_pred_samples, num_chains=1, disable_progbar=True,
warmup_steps=warmup_steps, mp_context="fork")
mcmc.run(X_train_sample, y_train_sample)
preds = infer.mcmc.util.predictive(model, mcmc.get_samples(), X_test_sample, None)
acc, nll, mse = evaluate_preds(preds, y_test_sample)
nll_list += [nll.detach().cpu().numpy()]
acc_list += [acc.detach().cpu().numpy()]
return np.array(nll_list), np.array(acc_list)
def eval_transformer(X, y, device, model, training_samples_n):
X_sample, y_sample = X.transpose(0, 1), y.transpose(0, 1).float()
bs = 1
samples = []
for i in range(0, X_sample.shape[1] // bs):
samples += [(X_sample[:, bs * i:bs * (i + 1)], y_sample[:, bs * i:bs * (i + 1)])]
mean = X_sample[:training_samples_n].mean(0)
std = X_sample[:training_samples_n].std(0) + .000001
X_sample = (X_sample - mean) / std
start = time.time()
output = torch.cat(
[model.to(device)((X_sample_chunk, y_sample_chunk), single_eval_pos=training_samples_n).squeeze(-1) for
(X_sample_chunk, y_sample_chunk) in samples], 1)
elapsed = time.time() - start
output = output.detach().cpu()
acc = ((torch.sigmoid(output) > 0.5) == y_sample[training_samples_n:].cpu().bool()).float().mean(axis=0)
nll = nn.BCELoss(reduction='none')(torch.sigmoid(output.float()), y_sample[training_samples_n:].cpu().float()).mean(
axis=0)
return acc, nll, elapsed
def training_steps(method, X, y, model_spec, device='cpu', path_interfix='', overwrite=False):
training_samples_n = 100
for s in [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]:
path = f'/home/hollmann/prior-fitting/{path_interfix}/results_{method}_training_steps_{s}.npy'
if (os.path.isfile(path)) and not overwrite:
print(f'already done {s}')
continue
start = time.time()
if method == 'svi':
nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=s, num_pred_samples=s, svgd=False)
elif method == 'svgd':
nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=s, num_pred_samples=s, svgd=True)
elif method == 'mcmc':
nll, acc = eval_mcmc(X, y, device, model_spec, training_samples_n, warmup_steps=s, num_pred_samples=s)
elapsed = time.time() - start
print(s)
print('NLL ', compute_mean_and_conf_interval(nll))
print('ACC ', compute_mean_and_conf_interval(acc))
print('TIME ', elapsed)
with open(path, 'wb') as f:
np.save(f, (np.array(nll), np.array(acc), elapsed))
print(f'Saved results at {path}')
def training_samples(method, X, y, model_spec, evaluation_points, steps = None, device='cpu', path_interfix='', overwrite=False):
num_pred_samples_mcmc = steps if steps else 512
warmup_steps = steps if steps else 512
num_pred_samples_svi = steps if steps else 1024
num_train_steps = steps if steps else 1024
num_pred_samples = num_pred_samples_svi if method == 'svi' else num_pred_samples_mcmc
for training_samples_n in evaluation_points:
path = f'/home/hollmann/prior-fitting/{path_interfix}/results_{method}_{num_pred_samples}_training_samples_{training_samples_n}.npy'
if (os.path.isfile(path)) and not overwrite:
print(f'already done {training_samples_n}')
continue
start = time.time()
if method == 'svi':
nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=num_train_steps, num_pred_samples=num_pred_samples)
elif method == 'svgd':
nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=num_train_steps, num_pred_samples=num_pred_samples, svgd=True)
elif method == 'mcmc':
nll, acc = eval_mcmc(X, y, device, model_spec, training_samples_n, warmup_steps=warmup_steps, num_pred_samples=num_pred_samples)
elapsed = time.time() - start
print('NLL ', compute_mean_and_conf_interval(nll))
print('ACC ', compute_mean_and_conf_interval(acc))
print('TIME ', elapsed)
with open(path, 'wb') as f:
np.save(f, (training_samples_n, np.array(nll), np.array(acc), elapsed))
### MAIN
def get_default_model_spec(size):
bptt = 300
if size == 'big':
num_features = 8
embed = 64
nlayers = 2
elif size == 'small':
num_features = 3
embed = 5
nlayers = 2
else:
num_features = int(size.split("_")[0])
embed = int(size.split("_")[1])
nlayers = int(size.split("_")[2])
return {'nlayers': nlayers, 'embed': embed, 'num_features': num_features, "seq_len": bptt}
def get_default_evaluation_points():
return list(range(2, 100, 5))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--solver', default='svi', type=str)
parser.add_argument('--task', default='steps', type=str)
parser.add_argument('--model_size', default='small', type=str)
args = parser.parse_args()
model_spec = get_default_model_spec(args.model_size)
evaluation_points = get_default_evaluation_points()
device = 'cuda:0' if args.solver == 'svi' else 'cpu'
torch.manual_seed(0)
test_model = BayesianModel(model_spec, device=device)
X, y = generate_toy_data(test_model, model_spec['seq_len'])
model_sampler = lambda: BayesianModel(model_spec, device=device)
if args.task == 'steps':
training_steps(args.solver, X, y, model_sampler, device=device,
path_interfix=f'results/timing_{args.model_size}_model', svgd=args.svgd)
elif args.task == 'samples':
training_samples(args.solver, X, y, model_sampler, evaluation_points, device=device,
path_interfix=f'results/timing_{args.model_size}_model', svgd=args.svgd)
|