File size: 13,988 Bytes
f50f696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import argparse
import time
import yaml

import torch
from torch import nn
from transformer import TransformerModel
from bar_distribution import BarDistribution, FullSupportBarDistribution, get_bucket_limits
from utils import get_cosine_schedule_with_warmup, get_openai_lr, StoreDictKeyPair, get_weighted_single_eval_pos_sampler, get_uniform_single_eval_pos_sampler
import priors
import encoders
import positional_encodings

class Losses():
    gaussian = nn.GaussianNLLLoss(full=True, reduction='none')
    mse = nn.MSELoss(reduction='none')
    ce = nn.CrossEntropyLoss(reduction='none')
    bce = nn.BCEWithLogitsLoss(reduction='none')
    get_BarDistribution = BarDistribution


def train(priordataloader_class, criterion, encoder_generator, emsize=200, nhid=200, nlayers=6, nhead=2, dropout=0.2,
          epochs=10, steps_per_epoch=100, batch_size=200, bptt=10, lr=None, warmup_epochs=10, input_normalization=False,
          y_encoder_generator=None, pos_encoder_generator=None, decoder=None, extra_prior_kwargs_dict={}, scheduler=get_cosine_schedule_with_warmup,
          load_weights_from_this_state_dict=None, validation_period=10, single_eval_pos_gen=None, gpu_device='cuda:0',
          aggregate_k_gradients=1, verbose=True
          ):

    device = gpu_device if torch.cuda.is_available() else 'cpu:0'
    print(f'Using {device} device')
    dl = priordataloader_class(num_steps=steps_per_epoch, batch_size=batch_size, seq_len=bptt, **extra_prior_kwargs_dict)

    encoder = encoder_generator(dl.num_features+1 if dl.fuse_x_y else dl.num_features,emsize)
    n_out = dl.num_outputs
    if isinstance(criterion, nn.GaussianNLLLoss):
        n_out *= 2
    elif isinstance(criterion, BarDistribution) or "BarDistribution" in criterion.__class__.__name__: # TODO remove this fix (only for dev)
        assert n_out == 1
        n_out = criterion.num_bars
    model = TransformerModel(encoder, n_out, emsize, nhead, nhid, nlayers, dropout,
                             y_encoder=y_encoder_generator(1, emsize), input_normalization=input_normalization,
                             pos_encoder=(pos_encoder_generator or positional_encodings.NoPositionalEncoding)(emsize, bptt*2),
                             decoder=decoder
                             )
    model.criterion = criterion
    if load_weights_from_this_state_dict is not None:
        model.load_state_dict(load_weights_from_this_state_dict)
    model.to(device)


    # learning rate
    if lr is None:
        lr = get_openai_lr(model)
        print(f"Using OpenAI max lr of {lr}.")
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = scheduler(optimizer, warmup_epochs, epochs)

    def train():
        model.train()  # Turn on the train mode
        total_loss = 0.
        total_positional_losses = 0.
        total_positional_losses_recorded = 0
        start_time = time.time()
        before_get_batch = time.time()
        assert len(dl) % aggregate_k_gradients == 0, 'Please set the number of steps per epoch s.t. `aggregate_k_gradients` divides it.'
        for batch, (data, targets) in enumerate(dl):
            time_to_get_batch = time.time() - before_get_batch
            before_forward = time.time()
            single_eval_pos = single_eval_pos_gen() if callable(single_eval_pos_gen) else single_eval_pos_gen
            output = model(tuple(e.to(device) for e in data) if isinstance(data, tuple) else data.to(device)
                           , single_eval_pos=single_eval_pos)

            forward_time = time.time() - before_forward

            if single_eval_pos is not None:
                targets = targets[single_eval_pos:]

            if isinstance(criterion, nn.GaussianNLLLoss):
                assert output.shape[-1] == 2, \
                    'need to write a little bit of code to handle multiple regression targets at once'

                mean_pred = output[..., 0]
                var_pred = output[..., 1].abs()
                losses = criterion(mean_pred.flatten(), targets.to(device).flatten(), var=var_pred.flatten())
            elif isinstance(criterion, (nn.MSELoss, nn.BCEWithLogitsLoss)):
                losses = criterion(output.flatten(), targets.to(device).flatten())
            else:
                losses = criterion(output.reshape(-1, n_out), targets.to(device).flatten())
            losses = losses.view(*output.shape[0:2]).squeeze(-1)


            loss = losses.mean()
            loss.backward()
            if batch % aggregate_k_gradients == aggregate_k_gradients - 1:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
                optimizer.step()
                optimizer.zero_grad()

            step_time = time.time() - before_forward

            total_loss += loss.item()
            total_positional_losses += losses.mean(1).cpu().detach() if single_eval_pos is None else \
                nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)*loss.cpu().detach()

            total_positional_losses_recorded += torch.ones(bptt) if single_eval_pos is None else \
                nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)

            before_get_batch = time.time()
        return total_loss / steps_per_epoch, (
                    total_positional_losses / total_positional_losses_recorded).tolist(), time_to_get_batch, forward_time, step_time

    best_val_loss = float("inf")
    best_model = None
    total_loss = float('inf')
    total_positional_losses = float('inf')
    for epoch in range(1, epochs + 1):
        epoch_start_time = time.time()
        total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time = train()
        if hasattr(dl, 'validate') and epoch % validation_period == 0:
            with torch.no_grad():
                val_score = dl.validate(model)
        else:
            val_score = None

        if verbose:
            print('-' * 89)
            print(
                f'| end of epoch {epoch:3d} | time: {(time.time() - epoch_start_time):5.2f}s | mean loss {total_loss:5.2f} | '
                f"pos losses {','.join([f'{l:5.2f}' for l in total_positional_losses])}, lr {scheduler.get_last_lr()[0]}"
                f' data time {time_to_get_batch:5.2f} step time {step_time:5.2f}'
                f' forward time {forward_time:5.2f}' + (f'val score {val_score}' if val_score is not None else ''))
            print('-' * 89)

        scheduler.step()
    return total_loss, total_positional_losses, model.to('cpu')

def _parse_args(config_parser, parser):
    # Do we have a config file to parse?
    args_config, remaining = config_parser.parse_known_args()
    if args_config.config:
        with open(args_config.config, 'r') as f:
            cfg = yaml.safe_load(f)
            parser.set_defaults(**cfg)

    # The main arg parser parses the rest of the args, the usual
    # defaults will have been overridden if config file specified.
    args = parser.parse_args(remaining)

    # Cache the args as a text string to save them in the output dir later
    args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
    return args, args_text


if __name__ == '__main__':
    config_parser = argparse.ArgumentParser(description='Only used as a first parser for the config file path.')
    config_parser.add_argument('--config')
    parser = argparse.ArgumentParser()
    parser.add_argument('prior')
    parser.add_argument('--loss_function', default='barnll')
    # Optional Arg's for `--loss_function barnll`
    parser.add_argument('--min_y', type=float, help='barnll can only model y in strict ranges, this is the minimum y can take.')
    parser.add_argument('--max_y', type=float, help='barnll can only model y in strict ranges, this is the maximum y can take.')
    parser.add_argument('--num_buckets', default=100, type=int)
    #parser.add_argument('--num_features', default=None, type=int, help='Specify depending on the prior.')
    parser.add_argument("--extra_prior_kwargs_dict", default={'fuse_x_y': False}, dest="extra_prior_kwargs_dict", action=StoreDictKeyPair, nargs="+", metavar="KEY=VAL", help='Specify depending on the prior.')
    parser.add_argument('--encoder', default='linear', type=str, help='Specify depending on the prior.')
    parser.add_argument('--y_encoder', default='linear', type=str, help='Specify depending on the prior. You should specify this if you do not fuse x and y.')
    parser.add_argument('--pos_encoder', default='sinus', type=str, help='Specify depending on the prior.')
    parser.add_argument('--bptt', default=10, type=int)
    parser.add_argument('--epochs', default=200, type=int)
    parser.add_argument('--warmup_epochs', default=50, type=int)
    parser.add_argument('--validation_period', default=10, type=int)
    parser.add_argument('--permutation_invariant_max_eval_pos', default=None, type=int, help='Set this to an int to ')
    parser.add_argument('--permutation_invariant_sampling', default='weighted', help="Only relevant if --permutation_invariant_max_eval_pos is set.")

    # these can likely be mostly left at defaults
    parser.add_argument('--emsize', default=512, type=int) # sometimes even larger is better e.g. 1024
    parser.add_argument('--nlayers', default=6, type=int)
    parser.add_argument('--nhid', default=None, type=int) # 2*emsize is the default
    parser.add_argument('--nhead', default=4, type=int) # nhead = emsize / 64 in the original paper
    parser.add_argument('--dropout', default=.0, type=float)
    parser.add_argument('--steps_per_epoch', default=10, type=int)
    parser.add_argument('--batch_size', default=1000, type=int)
    parser.add_argument('--lr', '--learning_rate', default=.001, type=float) # try also .0003, .0001, go lower with lower batch size

    args, _ = _parse_args(config_parser, parser)

    if args.nhid is None:
        args.nhid = 2*args.emsize

    prior = args.__dict__.pop('prior')

    if prior == 'gp':
        prior = priors.fast_gp.DataLoader
    elif prior == 'ridge':
        prior = priors.ridge.DataLoader
    elif prior == 'stroke':
        prior = priors.stroke.DataLoader
    elif prior == 'mix_gp':
        prior = priors.fast_gp_mix.DataLoader
    else:
        raise NotImplementedError(f'Prior == {prior}.')


    loss_function = args.__dict__.pop('loss_function')

    criterion = nn.GaussianNLLLoss(reduction='none', full=True)
    classificiation_criterion = nn.CrossEntropyLoss(reduction='none')
    num_buckets = args.__dict__.pop('num_buckets')
    max_y = args.__dict__.pop('max_y')
    min_y = args.__dict__.pop('min_y')
    # criterion = nn.MSELoss(reduction='none')

    def get_y_sample():
        dl = prior(num_steps=1, batch_size=args.batch_size * args.steps_per_epoch, seq_len=args.bptt,
                   **args.extra_prior_kwargs_dict)
        y_sample = next(iter(dl))[-1]
        print(f'Creating Bar distribution with borders from y sample of size {y_sample.numel()}')
        return y_sample

    if loss_function == 'ce':
        criterion = nn.CrossEntropyLoss(reduction='none')
    elif loss_function == 'gaussnll':
        criterion = nn.GaussianNLLLoss(reduction='none', full=True)
    elif loss_function == 'mse':
        criterion = nn.MSELoss(reduction='none')
    elif loss_function == 'barnll':
        criterion = BarDistribution(borders=get_bucket_limits(num_buckets, full_range=(min_y,max_y)))
    elif loss_function == 'adaptivebarnll':
        borders = get_bucket_limits(num_buckets, ys=get_y_sample(), full_range=(min_y,max_y))
        criterion = BarDistribution(borders=borders)
    elif loss_function == 'adaptivefullsupportbarnll':
        assert min_y is None and max_y is None, "Please do not specify `min_y` and `max_y` with `unboundedadaptivebarnll`."
        borders = get_bucket_limits(num_buckets, ys=get_y_sample())
        criterion = FullSupportBarDistribution(borders=borders)
    else:
        raise NotImplementedError(f'loss_function == {loss_function}.')



    encoder = args.__dict__.pop('encoder')
    y_encoder = args.__dict__.pop('y_encoder')

    def get_encoder_generator(encoder):
        if encoder == 'linear':
            encoder_generator = encoders.Linear
        elif encoder == 'mlp':
            encoder_generator = encoders.MLP
        elif encoder == 'positional':
            encoder_generator = encoders.Positional
        else:
            raise NotImplementedError(f'A {encoder} encoder is not valid.')
        return encoder_generator

    encoder_generator = get_encoder_generator(encoder)
    y_encoder_generator = get_encoder_generator(y_encoder)

    pos_encoder = args.__dict__.pop('pos_encoder')

    if pos_encoder == 'none':
        pos_encoder_generator = None
    elif pos_encoder == 'sinus':
        pos_encoder_generator = positional_encodings.PositionalEncoding
    elif pos_encoder == 'learned':
        pos_encoder_generator = positional_encodings.LearnedPositionalEncoding
    elif pos_encoder == 'paired_scrambled_learned':
        pos_encoder_generator = positional_encodings.PairedScrambledPositionalEncodings
    else:
        raise NotImplementedError(f'pos_encoer == {pos_encoder} is not valid.')

    permutation_invariant_max_eval_pos = args.__dict__.pop('permutation_invariant_max_eval_pos')
    permutation_invariant_sampling = args.__dict__.pop('permutation_invariant_sampling')
    if permutation_invariant_max_eval_pos is not None:
        if permutation_invariant_sampling == 'weighted':
            get_sampler = get_weighted_single_eval_pos_sampler
        elif permutation_invariant_sampling == 'uniform':
            get_sampler = get_uniform_single_eval_pos_sampler
        else:
            raise ValueError()
        args.__dict__['single_eval_pos_gen'] = get_sampler(permutation_invariant_max_eval_pos)


    print("ARGS for `train`:", args.__dict__)

    train(prior, criterion, encoder_generator,
          y_encoder_generator=y_encoder_generator,pos_encoder_generator=pos_encoder_generator,
          **args.__dict__)