File size: 13,988 Bytes
f50f696 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import argparse
import time
import yaml
import torch
from torch import nn
from transformer import TransformerModel
from bar_distribution import BarDistribution, FullSupportBarDistribution, get_bucket_limits
from utils import get_cosine_schedule_with_warmup, get_openai_lr, StoreDictKeyPair, get_weighted_single_eval_pos_sampler, get_uniform_single_eval_pos_sampler
import priors
import encoders
import positional_encodings
class Losses():
gaussian = nn.GaussianNLLLoss(full=True, reduction='none')
mse = nn.MSELoss(reduction='none')
ce = nn.CrossEntropyLoss(reduction='none')
bce = nn.BCEWithLogitsLoss(reduction='none')
get_BarDistribution = BarDistribution
def train(priordataloader_class, criterion, encoder_generator, emsize=200, nhid=200, nlayers=6, nhead=2, dropout=0.2,
epochs=10, steps_per_epoch=100, batch_size=200, bptt=10, lr=None, warmup_epochs=10, input_normalization=False,
y_encoder_generator=None, pos_encoder_generator=None, decoder=None, extra_prior_kwargs_dict={}, scheduler=get_cosine_schedule_with_warmup,
load_weights_from_this_state_dict=None, validation_period=10, single_eval_pos_gen=None, gpu_device='cuda:0',
aggregate_k_gradients=1, verbose=True
):
device = gpu_device if torch.cuda.is_available() else 'cpu:0'
print(f'Using {device} device')
dl = priordataloader_class(num_steps=steps_per_epoch, batch_size=batch_size, seq_len=bptt, **extra_prior_kwargs_dict)
encoder = encoder_generator(dl.num_features+1 if dl.fuse_x_y else dl.num_features,emsize)
n_out = dl.num_outputs
if isinstance(criterion, nn.GaussianNLLLoss):
n_out *= 2
elif isinstance(criterion, BarDistribution) or "BarDistribution" in criterion.__class__.__name__: # TODO remove this fix (only for dev)
assert n_out == 1
n_out = criterion.num_bars
model = TransformerModel(encoder, n_out, emsize, nhead, nhid, nlayers, dropout,
y_encoder=y_encoder_generator(1, emsize), input_normalization=input_normalization,
pos_encoder=(pos_encoder_generator or positional_encodings.NoPositionalEncoding)(emsize, bptt*2),
decoder=decoder
)
model.criterion = criterion
if load_weights_from_this_state_dict is not None:
model.load_state_dict(load_weights_from_this_state_dict)
model.to(device)
# learning rate
if lr is None:
lr = get_openai_lr(model)
print(f"Using OpenAI max lr of {lr}.")
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = scheduler(optimizer, warmup_epochs, epochs)
def train():
model.train() # Turn on the train mode
total_loss = 0.
total_positional_losses = 0.
total_positional_losses_recorded = 0
start_time = time.time()
before_get_batch = time.time()
assert len(dl) % aggregate_k_gradients == 0, 'Please set the number of steps per epoch s.t. `aggregate_k_gradients` divides it.'
for batch, (data, targets) in enumerate(dl):
time_to_get_batch = time.time() - before_get_batch
before_forward = time.time()
single_eval_pos = single_eval_pos_gen() if callable(single_eval_pos_gen) else single_eval_pos_gen
output = model(tuple(e.to(device) for e in data) if isinstance(data, tuple) else data.to(device)
, single_eval_pos=single_eval_pos)
forward_time = time.time() - before_forward
if single_eval_pos is not None:
targets = targets[single_eval_pos:]
if isinstance(criterion, nn.GaussianNLLLoss):
assert output.shape[-1] == 2, \
'need to write a little bit of code to handle multiple regression targets at once'
mean_pred = output[..., 0]
var_pred = output[..., 1].abs()
losses = criterion(mean_pred.flatten(), targets.to(device).flatten(), var=var_pred.flatten())
elif isinstance(criterion, (nn.MSELoss, nn.BCEWithLogitsLoss)):
losses = criterion(output.flatten(), targets.to(device).flatten())
else:
losses = criterion(output.reshape(-1, n_out), targets.to(device).flatten())
losses = losses.view(*output.shape[0:2]).squeeze(-1)
loss = losses.mean()
loss.backward()
if batch % aggregate_k_gradients == aggregate_k_gradients - 1:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
optimizer.step()
optimizer.zero_grad()
step_time = time.time() - before_forward
total_loss += loss.item()
total_positional_losses += losses.mean(1).cpu().detach() if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)*loss.cpu().detach()
total_positional_losses_recorded += torch.ones(bptt) if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), bptt)
before_get_batch = time.time()
return total_loss / steps_per_epoch, (
total_positional_losses / total_positional_losses_recorded).tolist(), time_to_get_batch, forward_time, step_time
best_val_loss = float("inf")
best_model = None
total_loss = float('inf')
total_positional_losses = float('inf')
for epoch in range(1, epochs + 1):
epoch_start_time = time.time()
total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time = train()
if hasattr(dl, 'validate') and epoch % validation_period == 0:
with torch.no_grad():
val_score = dl.validate(model)
else:
val_score = None
if verbose:
print('-' * 89)
print(
f'| end of epoch {epoch:3d} | time: {(time.time() - epoch_start_time):5.2f}s | mean loss {total_loss:5.2f} | '
f"pos losses {','.join([f'{l:5.2f}' for l in total_positional_losses])}, lr {scheduler.get_last_lr()[0]}"
f' data time {time_to_get_batch:5.2f} step time {step_time:5.2f}'
f' forward time {forward_time:5.2f}' + (f'val score {val_score}' if val_score is not None else ''))
print('-' * 89)
scheduler.step()
return total_loss, total_positional_losses, model.to('cpu')
def _parse_args(config_parser, parser):
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
if __name__ == '__main__':
config_parser = argparse.ArgumentParser(description='Only used as a first parser for the config file path.')
config_parser.add_argument('--config')
parser = argparse.ArgumentParser()
parser.add_argument('prior')
parser.add_argument('--loss_function', default='barnll')
# Optional Arg's for `--loss_function barnll`
parser.add_argument('--min_y', type=float, help='barnll can only model y in strict ranges, this is the minimum y can take.')
parser.add_argument('--max_y', type=float, help='barnll can only model y in strict ranges, this is the maximum y can take.')
parser.add_argument('--num_buckets', default=100, type=int)
#parser.add_argument('--num_features', default=None, type=int, help='Specify depending on the prior.')
parser.add_argument("--extra_prior_kwargs_dict", default={'fuse_x_y': False}, dest="extra_prior_kwargs_dict", action=StoreDictKeyPair, nargs="+", metavar="KEY=VAL", help='Specify depending on the prior.')
parser.add_argument('--encoder', default='linear', type=str, help='Specify depending on the prior.')
parser.add_argument('--y_encoder', default='linear', type=str, help='Specify depending on the prior. You should specify this if you do not fuse x and y.')
parser.add_argument('--pos_encoder', default='sinus', type=str, help='Specify depending on the prior.')
parser.add_argument('--bptt', default=10, type=int)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--warmup_epochs', default=50, type=int)
parser.add_argument('--validation_period', default=10, type=int)
parser.add_argument('--permutation_invariant_max_eval_pos', default=None, type=int, help='Set this to an int to ')
parser.add_argument('--permutation_invariant_sampling', default='weighted', help="Only relevant if --permutation_invariant_max_eval_pos is set.")
# these can likely be mostly left at defaults
parser.add_argument('--emsize', default=512, type=int) # sometimes even larger is better e.g. 1024
parser.add_argument('--nlayers', default=6, type=int)
parser.add_argument('--nhid', default=None, type=int) # 2*emsize is the default
parser.add_argument('--nhead', default=4, type=int) # nhead = emsize / 64 in the original paper
parser.add_argument('--dropout', default=.0, type=float)
parser.add_argument('--steps_per_epoch', default=10, type=int)
parser.add_argument('--batch_size', default=1000, type=int)
parser.add_argument('--lr', '--learning_rate', default=.001, type=float) # try also .0003, .0001, go lower with lower batch size
args, _ = _parse_args(config_parser, parser)
if args.nhid is None:
args.nhid = 2*args.emsize
prior = args.__dict__.pop('prior')
if prior == 'gp':
prior = priors.fast_gp.DataLoader
elif prior == 'ridge':
prior = priors.ridge.DataLoader
elif prior == 'stroke':
prior = priors.stroke.DataLoader
elif prior == 'mix_gp':
prior = priors.fast_gp_mix.DataLoader
else:
raise NotImplementedError(f'Prior == {prior}.')
loss_function = args.__dict__.pop('loss_function')
criterion = nn.GaussianNLLLoss(reduction='none', full=True)
classificiation_criterion = nn.CrossEntropyLoss(reduction='none')
num_buckets = args.__dict__.pop('num_buckets')
max_y = args.__dict__.pop('max_y')
min_y = args.__dict__.pop('min_y')
# criterion = nn.MSELoss(reduction='none')
def get_y_sample():
dl = prior(num_steps=1, batch_size=args.batch_size * args.steps_per_epoch, seq_len=args.bptt,
**args.extra_prior_kwargs_dict)
y_sample = next(iter(dl))[-1]
print(f'Creating Bar distribution with borders from y sample of size {y_sample.numel()}')
return y_sample
if loss_function == 'ce':
criterion = nn.CrossEntropyLoss(reduction='none')
elif loss_function == 'gaussnll':
criterion = nn.GaussianNLLLoss(reduction='none', full=True)
elif loss_function == 'mse':
criterion = nn.MSELoss(reduction='none')
elif loss_function == 'barnll':
criterion = BarDistribution(borders=get_bucket_limits(num_buckets, full_range=(min_y,max_y)))
elif loss_function == 'adaptivebarnll':
borders = get_bucket_limits(num_buckets, ys=get_y_sample(), full_range=(min_y,max_y))
criterion = BarDistribution(borders=borders)
elif loss_function == 'adaptivefullsupportbarnll':
assert min_y is None and max_y is None, "Please do not specify `min_y` and `max_y` with `unboundedadaptivebarnll`."
borders = get_bucket_limits(num_buckets, ys=get_y_sample())
criterion = FullSupportBarDistribution(borders=borders)
else:
raise NotImplementedError(f'loss_function == {loss_function}.')
encoder = args.__dict__.pop('encoder')
y_encoder = args.__dict__.pop('y_encoder')
def get_encoder_generator(encoder):
if encoder == 'linear':
encoder_generator = encoders.Linear
elif encoder == 'mlp':
encoder_generator = encoders.MLP
elif encoder == 'positional':
encoder_generator = encoders.Positional
else:
raise NotImplementedError(f'A {encoder} encoder is not valid.')
return encoder_generator
encoder_generator = get_encoder_generator(encoder)
y_encoder_generator = get_encoder_generator(y_encoder)
pos_encoder = args.__dict__.pop('pos_encoder')
if pos_encoder == 'none':
pos_encoder_generator = None
elif pos_encoder == 'sinus':
pos_encoder_generator = positional_encodings.PositionalEncoding
elif pos_encoder == 'learned':
pos_encoder_generator = positional_encodings.LearnedPositionalEncoding
elif pos_encoder == 'paired_scrambled_learned':
pos_encoder_generator = positional_encodings.PairedScrambledPositionalEncodings
else:
raise NotImplementedError(f'pos_encoer == {pos_encoder} is not valid.')
permutation_invariant_max_eval_pos = args.__dict__.pop('permutation_invariant_max_eval_pos')
permutation_invariant_sampling = args.__dict__.pop('permutation_invariant_sampling')
if permutation_invariant_max_eval_pos is not None:
if permutation_invariant_sampling == 'weighted':
get_sampler = get_weighted_single_eval_pos_sampler
elif permutation_invariant_sampling == 'uniform':
get_sampler = get_uniform_single_eval_pos_sampler
else:
raise ValueError()
args.__dict__['single_eval_pos_gen'] = get_sampler(permutation_invariant_max_eval_pos)
print("ARGS for `train`:", args.__dict__)
train(prior, criterion, encoder_generator,
y_encoder_generator=y_encoder_generator,pos_encoder_generator=pos_encoder_generator,
**args.__dict__)
|