File size: 6,219 Bytes
f50f696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from PIL import Image, ImageDraw, ImageFilter
import random
import math

import torch
import numpy as np
from .utils import get_batch_to_dataloader

def mnist_prior(num_classes=2, size=28, min_max_strokes=(1,3), min_max_len=(5/28,20/28), min_max_start=(2/28,25/28),
                min_max_width=(1/28,4/28), max_offset=4/28, max_target_offset=2/28):
    classes = []
    for i in range(num_classes):
        num_strokes = random.randint(*min_max_strokes)
        len_strokes = [random.randint(int(size * min_max_len[0]), int(size * min_max_len[1])) for i in range(num_strokes)]
        stroke_start_points = [
            (random.randint(int(size * min_max_start[0]), int(size * min_max_start[1])), random.randint(int(size * min_max_start[0]), int(size * min_max_start[1]))) for i in
            range(num_strokes)]
        stroke_directions = []
        # i = Image.fromarray(np.zeros((28,28),dtype=np.uint8))
        # draw = ImageDraw.Draw(i)
        for i in range(num_strokes):
            sp, length = stroke_start_points[i], len_strokes[i]
            counter = 0
            while True:
                if counter % 3 == 0:
                    length = random.randint(int(size * min_max_len[0]), int(size * min_max_len[1]))
                    sp = (
                    random.randint(int(size * min_max_start[0]), int(size * min_max_start[1])), random.randint(int(size * min_max_start[0]), int(size * min_max_start[1])))
                    stroke_start_points[i], len_strokes[i] = sp, length
                radians = random.random() * 2 * math.pi
                x_vel = math.cos(radians) * length
                y_vel = math.sin(radians) * length
                new_p = (sp[0] + x_vel, sp[1] + y_vel)
                # print(math.degrees(radians),sp,new_p)
                if not any(n > size - 1 or n < 0 for n in new_p):
                    break
                counter += 1
            stroke_directions.append(radians)
            # print([round(x) for x in sp+new_p])
            # draw.line([round(x) for x in sp+new_p], fill=128, width=3)
        classes.append((len_strokes, stroke_start_points, stroke_directions))

    generator_functions = []
    for c in classes:
        def g(c=c):
            len_strokes, stroke_start_points, stroke_directions = c
            i = Image.fromarray(np.zeros((size, size), dtype=np.uint8))
            draw = ImageDraw.Draw(i)
            width = random.randint(int(size * min_max_width[0]), int(size * min_max_width[1]))
            offset = random.randint(int(-size * max_offset), int(size * max_offset)), random.randint(int(- size * max_offset), int(size * max_offset))
            for sp, length, radians in zip(stroke_start_points, len_strokes, stroke_directions):
                sp = (sp[0] + offset[0], sp[1] + offset[1])
                x_vel = math.cos(radians) * length + random.randint(int(-size * max_target_offset), int(size * max_target_offset))
                y_vel = math.sin(radians) * length + random.randint(int(-size * max_target_offset), int(size * max_target_offset))
                new_p = (sp[0] + x_vel, sp[1] + y_vel)
                stroke_directions.append(radians)
                draw.line([round(x) for x in sp + new_p], fill=128, width=width)
            a_i = np.array(i)
            a_i[a_i == 128] = np.random.randint(200, 255, size=a_i.shape)[a_i == 128]
            return Image.fromarray(a_i).filter(ImageFilter.GaussianBlur(.2))

        generator_functions.append(g)
    return generator_functions


# g1,g2 = mnist_prior(2)

# for i in [g1() for _ in range(10)]:
#    display(i.resize((200,200)))

from torchvision.transforms import ToTensor, ToPILImage


def normalize(x):
    return (x-x.mean())/(x.std()+.000001)

from os import path, listdir
import random

def get_batch(batch_size, seq_len, num_features=None, noisy_std=None, only_train_for_last_idx=False, normalize_x=False, num_outputs=2, use_saved_from=None, **kwargs):  # num_features = 28*28=784
    if use_saved_from is not None:
        directory = path.join(use_saved_from, f'len_{seq_len}_out_{num_outputs}_features_{num_features}_bs_{batch_size}')
        filename = random.choice(listdir(directory))
        return torch.load(path.join(directory,filename))

    size = math.isqrt(num_features)
    assert size * size == num_features, 'num_features needs to be the square of an integer.'
    if only_train_for_last_idx:
        assert (seq_len-1) % num_outputs == 0

    # assert seq_len % 2 == 0, "assert seq_len % 2 == 0"
    batch = []
    y = []
    target_y = []
    for b_i in range(batch_size):
        gs = mnist_prior(num_outputs, size, **kwargs)
        if only_train_for_last_idx:
            generators = [i for i in range(len(gs)) for _ in range((seq_len-1) // num_outputs)]
            random.shuffle(generators)
            generators += [random.randint(0, len(gs) - 1)]
            target = [-100 for _ in generators]
            target[-1] = generators[-1]
        else:
            generators = [random.randint(0, len(gs) - 1) for _ in range(seq_len)]
            target = generators
        normalize_or_not = lambda x: normalize(x) if normalize_x else x
        s = torch.cat([normalize_or_not(ToTensor()(gs[f_i]())) for f_i in generators], 0)
        batch.append(s)
        y.append(torch.tensor(generators))
        target_y.append(torch.tensor(target))
    x = torch.stack(batch, 1).view(seq_len, batch_size, -1)
    y = torch.stack(y, 1)
    target_y = torch.stack(target_y, 1)
    return x,y,target_y

DataLoader = get_batch_to_dataloader(get_batch)
DataLoader.num_outputs = 2

if __name__ == '__main__':
    g1, g2 = mnist_prior(2, size=3)

    # for i in range(10):
    # print(PILToTensor()(g1()))
    # display(ToPILImage()(PILToTensor()(g1())).resize((200,200)))
    # display(g2().resize((200,200)))

    size = 10
    x, y = get_batch(1, 10, num_features=size * size)

    x_ = x[..., :-1].squeeze(1)
    last_y = x[..., -1].squeeze(1)
    y = y.squeeze(1)

    # print(y)

    for i, y_, last_y_, x__ in zip(x_, y, last_y, x.squeeze(1)):
        # print(y_)
        # print(i.shape)
        # print(x__)
        img = ToPILImage()(i.view(size, size))
        # display(img.resize((200,200)))

    print(y, last_y)