File size: 9,866 Bytes
f50f696 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import random
import torch
from torch import nn
import numpy as np
from utils import default_device
from .utils import get_batch_to_dataloader
from .utils import order_by_y, normalize_data, normalize_by_used_features_f, Binarize
from .utils import trunc_norm_sampler_f, beta_sampler_f, gamma_sampler_f, uniform_sampler_f, zipf_sampler_f, scaled_beta_sampler_f, uniform_int_sampler_f
def canonical_pre_processing(x, canonical_args):
assert x.shape[2] == len(canonical_args)
ranges = [torch.arange(num_classes).float() if num_classes is not None else None for num_classes in canonical_args]
for feature_dim, rang in enumerate(ranges):
if rang is not None:
x[:, :, feature_dim] = (x[:, :, feature_dim] - rang.mean()) / rang.std()
return x
DEFAULT_NUM_LAYERS = 2
DEFAULT_HIDDEN_DIM = 100
DEFAULT_ACTIVATION_MODULE = torch.nn.ReLU
DEFAULT_INIT_STD = .1
DEFAULT_HIDDEN_NOISE_STD = .1
DEFAULT_FIXED_DROPOUT = 0.
DEFAULT_IS_BINARY_CLASSIFICATION = False
class GaussianNoise(nn.Module):
def __init__(self, std):
super().__init__()
self.std = std
def forward(self, x):
return x + torch.normal(torch.zeros_like(x), self.std)
def causes_sampler_f(num_causes_sampler):
num_causes = num_causes_sampler()
means = np.random.normal(0, 1, (num_causes))
std = np.abs(np.random.normal(0, 1, (num_causes)) * means)
return means, std
def categorical_features_sampler(max_features):
features = []
ordinal = []
num_categorical_features_sampler = scaled_beta_sampler_f(0.5, .8, max_features, 0)
is_ordinal_sampler = lambda : random.choice([True, False])
classes_per_feature_sampler = scaled_beta_sampler_f(0.1, 2.0, 10, 1)
classes_per_feature_sampler_ordinal = scaled_beta_sampler_f(0.1, 2.0, 200, 1)
for i in range(0, num_categorical_features_sampler()):
ordinal_s = is_ordinal_sampler()
ordinal.append(ordinal_s)
classes = classes_per_feature_sampler_ordinal() if ordinal_s else classes_per_feature_sampler()
features.append(np.random.rand(classes))
return features, ordinal
def get_batch(batch_size, seq_len, num_features, device=default_device, hyperparameters=(DEFAULT_NUM_LAYERS, DEFAULT_HIDDEN_DIM, DEFAULT_ACTIVATION_MODULE, DEFAULT_INIT_STD, DEFAULT_HIDDEN_NOISE_STD, DEFAULT_FIXED_DROPOUT, DEFAULT_IS_BINARY_CLASSIFICATION),
batch_size_per_gp_sample=None, num_outputs=1, canonical_args=None, sampling='normal'):
assert num_outputs == 1
num_layers_sampler, hidden_dim_sampler, activation_module, init_std_sampler, noise_std_sampler, dropout_prob_sampler, is_binary_classification, num_features_used_sampler, causes_sampler, is_causal, pre_sample_causes, pre_sample_weights, y_is_effect, order_y, normalize_by_used_features, categorical_features_sampler, nan_prob = hyperparameters
# if is_binary_classification:
# sample_batch_size = 100*batch_size
# else:
sample_batch_size = batch_size
# if canonical_args is not None:
# assert len(canonical_args) == num_causes
# # should be list of [None, 2, 4] meaning scalar parameter, 2 classes, 4 classes
#
# for feature_idx, num_classes in enumerate(canonical_args):
# if num_classes is not None:
# causes[:,:,feature_idx] = torch.randint(num_classes, (seq_len, sample_batch_size))
#
# causes = canonical_pre_processing(causes, canonical_args)
batch_size_per_gp_sample = batch_size_per_gp_sample or sample_batch_size // 8
assert sample_batch_size % batch_size_per_gp_sample == 0, 'Please choose a batch_size divisible by batch_size_per_gp_sample.'
num_models = sample_batch_size // batch_size_per_gp_sample
# standard kaiming uniform init currently...
def get_model():
class MLP(torch.nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.dropout_prob = dropout_prob_sampler()
self.noise_std = noise_std_sampler()
self.init_std = init_std_sampler()
self.num_features_used = num_features_used_sampler()
self.categorical_features, self.categorical_features_is_ordinal = categorical_features_sampler(self.num_features_used)
if is_causal:
self.causes = causes_sampler() if is_causal else self.num_features_used
self.causes = (torch.tensor(self.causes[0], device=device).unsqueeze(0).unsqueeze(0).tile((seq_len,1,1)), torch.tensor(self.causes[1], device=device).unsqueeze(0).unsqueeze(0).tile((seq_len,1,1)))
self.num_causes = self.causes[0].shape[2]
else:
self.num_causes = self.num_features_used
self.num_layers = num_layers_sampler()
self.hidden_dim = hidden_dim_sampler()
if is_causal:
self.hidden_dim = max(self.hidden_dim, 2 * self.num_features_used+1)
#print('cat', self.categorical_features, self.categorical_features_is_ordinal, self.num_features_used)
assert(self.num_layers > 2)
self.layers = [nn.Linear(self.num_causes, self.hidden_dim, device=device)]
self.layers += [module for layer_idx in range(self.num_layers-1) for module in [
nn.Sequential(*[
activation_module()
, nn.Linear(self.hidden_dim, num_outputs if layer_idx == self.num_layers - 2 else self.hidden_dim, device=device)
, GaussianNoise(torch.abs(torch.normal(torch.zeros((num_outputs if layer_idx == self.num_layers - 2 else self.hidden_dim),device=device), self.noise_std))) if pre_sample_weights else GaussianNoise(self.noise_std)
])
]]
self.layers = nn.Sequential(*self.layers)
self.binarizer = Binarize() if is_binary_classification else lambda x : x
# Initialize Model parameters
for i, p in enumerate(self.layers.parameters()):
dropout_prob = self.dropout_prob if i > 0 else 0.0
nn.init.normal_(p, std=self.init_std / (1. - dropout_prob))
with torch.no_grad():
p *= torch.bernoulli(torch.zeros_like(p) + 1. - dropout_prob)
def forward(self):
if sampling == 'normal':
if is_causal and pre_sample_causes:
causes = torch.normal(self.causes[0], self.causes[1].abs()).float()
else:
causes = torch.normal(0., 1., (seq_len, 1, self.num_causes), device=device).float()
elif sampling == 'uniform':
causes = torch.rand((seq_len, 1, self.num_causes), device=device)
else:
raise ValueError(f'Sampling is set to invalid setting: {sampling}.')
outputs = [causes]
for layer in self.layers:
outputs.append(layer(outputs[-1]))
outputs = outputs[2:]
if is_causal:
outputs_flat = torch.cat(outputs, -1)
random_perm = torch.randperm(outputs_flat.shape[-1]-1, device=device)
random_idx_y = [-1] if y_is_effect else random_perm[0:num_outputs]
y = outputs_flat[:, :, random_idx_y]
random_idx = random_perm[num_outputs:num_outputs + self.num_features_used]
x = outputs_flat[:, :, random_idx]
else:
y = outputs[-1][:, :, :]
x = causes
if len(self.categorical_features) > 0:
random_perm = torch.randperm(x.shape[-1], device=device)
for i, (categorical_feature, is_ordinal) in enumerate(zip(self.categorical_features, self.categorical_features_is_ordinal)):
idx = random_perm[i]
temp = normalize_data(x[:, :, idx])
if is_ordinal:
x[:, :, idx] = (temp > (torch.tensor(categorical_feature, device=device, dtype=torch.float32).unsqueeze(-1).unsqueeze(-1) - 0.5)).sum(axis=0)
else:
x[:, :, idx] = (temp > (torch.tensor(categorical_feature, device=device,
dtype=torch.float32).unsqueeze(-1).unsqueeze(-1) - 0.5)).sum(
axis=0) * (127 * len(categorical_feature) + 1) % len(categorical_feature)
# if nan_prob > 0:
# nan_value = random.choice([-999,-1,0, -10])
# x[torch.rand(x.shape, device=device) > (1-nan_prob)] = nan_value
x, y = normalize_data(x), normalize_data(y)
# Binarize output if enabled
y = self.binarizer(y)
if normalize_by_used_features:
x = normalize_by_used_features_f(x, self.num_features_used, num_features)
if is_binary_classification and order_y:
x, y = order_by_y(x,y)
# Append empty features if enabled
x = torch.cat([x, torch.zeros((x.shape[0], x.shape[1], num_features - self.num_features_used), device=device)], -1)
return x, y
return MLP()
models = [get_model() for _ in range(num_models)]
sample = sum([[model() for _ in range(0,batch_size_per_gp_sample)] for model in models],[])
x, y = zip(*sample)
y = torch.cat(y, 1).squeeze(-1).detach()
x = torch.cat(x, 1).detach()
return x, y, y
DataLoader = get_batch_to_dataloader(get_batch)
DataLoader.num_outputs = 1
|