Samuel Mueller
working locally
f50f696
raw
history blame
13.9 kB
import time
import functools
import random
import math
import traceback
import torch
from torch import nn
import gpytorch
from botorch.models import SingleTaskGP
from botorch.models.gp_regression import MIN_INFERRED_NOISE_LEVEL
from botorch.fit import fit_gpytorch_model
from gpytorch.mlls import ExactMarginalLogLikelihood
from gpytorch.likelihoods import GaussianLikelihood
from gpytorch.priors.torch_priors import GammaPrior
from gpytorch.constraints import GreaterThan
from bar_distribution import BarDistribution
from utils import default_device
from .utils import get_batch_to_dataloader
from . import fast_gp
def get_model(x, y, hyperparameters: dict, sample=True):
aug_batch_shape = SingleTaskGP(x,y.unsqueeze(-1))._aug_batch_shape
noise_prior = GammaPrior(hyperparameters.get('noise_concentration',1.1), hyperparameters.get('noise_rate',0.05))
noise_prior_mode = (noise_prior.concentration - 1) / noise_prior.rate
likelihood = GaussianLikelihood(
noise_prior=noise_prior,
batch_shape=aug_batch_shape,
noise_constraint=GreaterThan(
MIN_INFERRED_NOISE_LEVEL,
transform=None,
initial_value=noise_prior_mode,
),
)
model = SingleTaskGP(x, y.unsqueeze(-1),
covar_module=gpytorch.kernels.ScaleKernel(
gpytorch.kernels.MaternKernel(
nu=hyperparameters.get('nu',2.5),
ard_num_dims=x.shape[-1],
batch_shape=aug_batch_shape,
lengthscale_prior=gpytorch.priors.GammaPrior(hyperparameters.get('lengthscale_concentration',3.0), hyperparameters.get('lengthscale_rate',6.0)),
),
batch_shape=aug_batch_shape,
outputscale_prior=gpytorch.priors.GammaPrior(hyperparameters.get('outputscale_concentration',.5), hyperparameters.get('outputscale_rate',0.15)),
), likelihood=likelihood)
likelihood = model.likelihood
if sample:
sampled_model = model.pyro_sample_from_prior()
return sampled_model, sampled_model.likelihood
else:
assert not(hyperparameters.get('sigmoid', False)) and not(hyperparameters.get('y_minmax_norm', False)), "Sigmoid and y_minmax_norm can only be used to sample models..."
return model, likelihood
@torch.no_grad()
def get_batch(batch_size, seq_len, num_features, device=default_device, hyperparameters=None,
batch_size_per_gp_sample=None, num_outputs=1,
fix_to_range=None, equidistant_x=False):
'''
This function is very similar to the equivalent in .fast_gp. The only difference is that this function operates over
a mixture of GP priors.
:param batch_size:
:param seq_len:
:param num_features:
:param device:
:param hyperparameters:
:param for_regression:
:return:
'''
assert num_outputs == 1
hyperparameters = hyperparameters or {}
with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))):
batch_size_per_gp_sample = (batch_size_per_gp_sample or max(batch_size // 10,1))
assert batch_size % batch_size_per_gp_sample == 0
total_num_candidates = batch_size*(2**(fix_to_range is not None))
num_candidates = batch_size_per_gp_sample * (2**(fix_to_range is not None))
if equidistant_x:
assert num_features == 1
x = torch.linspace(0,1.,seq_len).unsqueeze(0).repeat(total_num_candidates,1).unsqueeze(-1)
else:
x = torch.rand(total_num_candidates, seq_len, num_features, device=device)
samples = []
for i in range(0,total_num_candidates,num_candidates):
num_of_dims ~ uniform
model, likelihood = get_model(x[i:i+num_candidates,...,:num_of_dims], torch.zeros(num_candidates,x.shape[1]), hyperparameters)
x[i:i + num_candidates, ..., num_of_dims:] = 0
x[i:i + num_candidates, ..., :num_of_dims] *= total_dims/num_of_dims
#print(model.covar_module.base_kernel.lengthscale)
model.to(device)
# trained_model = ExactGPModel(train_x, train_y, likelihood).cuda()
# trained_model.eval()
successful_sample = 0
throwaway_share = 0.
while successful_sample < 1:
with gpytorch.settings.prior_mode(True):
d = model(x[i:i+num_candidates])
d = likelihood(d)
sample = d.sample() # bs_per_gp_s x T
if hyperparameters.get('y_minmax_norm'):
sample = ((sample - sample.min(1)[0]) / (sample.max(1)[0] - sample.min(1)[0]))
if hyperparameters.get('sigmoid'):
sample = sample.sigmoid()
if fix_to_range is None:
samples.append(sample.transpose(0, 1))
successful_sample = True
continue
smaller_mask = sample < fix_to_range[0]
larger_mask = sample >= fix_to_range[1]
in_range_mask = ~ (smaller_mask | larger_mask).any(1)
throwaway_share += (~in_range_mask[:batch_size_per_gp_sample]).sum()/batch_size_per_gp_sample
if in_range_mask.sum() < batch_size_per_gp_sample:
successful_sample -= 1
if successful_sample < 100:
print("Please change hyper-parameters (e.g. decrease outputscale_mean) it"
"seems like the range is set to tight for your hyper-parameters.")
continue
x[i:i+batch_size_per_gp_sample] = x[i:i+num_candidates][in_range_mask][:batch_size_per_gp_sample]
sample = sample[in_range_mask][:batch_size_per_gp_sample]
samples.append(sample.transpose(0, 1))
successful_sample = True
if random.random() < .01:
print('throwaway share', throwaway_share/(batch_size//batch_size_per_gp_sample))
#print(f'took {time.time() - start}')
sample = torch.cat(samples, 1)
x = x.view(-1,batch_size,seq_len,num_features)[0]
# TODO think about enabling the line below
#sample = sample - sample[0, :].unsqueeze(0).expand(*sample.shape)
x = x.transpose(0,1)
assert x.shape[:2] == sample.shape[:2]
target_sample = sample
return x, sample, target_sample # x.shape = (T,B,H)
class DataLoader(get_batch_to_dataloader(get_batch)):
num_outputs = 1
@torch.no_grad()
def validate(self, model, step_size=1, start_pos=0):
if isinstance(model.criterion, BarDistribution):
(x,y), target_y = self.gbm(**self.get_batch_kwargs, fuse_x_y=self.fuse_x_y)
model.eval()
losses = []
for eval_pos in range(start_pos, len(x), step_size):
logits = model((x,y), single_eval_pos=eval_pos)
means = model.criterion.mean(logits) # num_evals x batch_size
mse = nn.MSELoss()
losses.append(mse(means[0], target_y[eval_pos]))
model.train()
return torch.stack(losses)
else:
return 123.
@torch.enable_grad()
def get_fitted_model(x, y, hyperparameters, device):
# fit the gaussian process
model, likelihood = get_model(x,y,hyperparameters,sample=False)
#print(model.covar_module.base_kernel.lengthscale)
model.to(device)
mll = ExactMarginalLogLikelihood(likelihood, model)
model.train()
fit_gpytorch_model(mll)
#print(model.covar_module.base_kernel.lengthscale)
return model, likelihood
evaluate = functools.partial(fast_gp.evaluate, get_model_on_device=get_fitted_model)
def get_mcmc_model(x, y, hyperparameters, device, num_samples, warmup_steps):
from pyro.infer.mcmc import NUTS, MCMC
import pyro
x = x.to(device)
y = y.to(device)
model, likelihood = get_model(x, y, hyperparameters, sample=False)
model.to(device)
def pyro_model(x, y):
sampled_model = model.pyro_sample_from_prior()
_ = sampled_model.likelihood(sampled_model(x))
return y
nuts_kernel = NUTS(pyro_model, adapt_step_size=True)
mcmc_run = MCMC(nuts_kernel, num_samples=num_samples, warmup_steps=warmup_steps)
#print(x.shape)
mcmc_run.run(x, y)
model.pyro_load_from_samples(mcmc_run.get_samples())
model.eval()
# test_x = torch.linspace(0, 1, 101).unsqueeze(-1)
# test_y = torch.sin(test_x * (2 * math.pi))
# expanded_test_x = test_x.unsqueeze(0).repeat(num_samples, 1, 1)
# output = model(expanded_test_x)
#print(x.shape)
return model, likelihood
# output = model(x[-1].unsqueeze(1).repeat(1, num_samples 1))
# return output.mean
def get_mean_logdensity(dists, x: torch.Tensor, full_range=None):
means = torch.cat([d.mean.squeeze() for d in dists], 0)
vars = torch.cat([d.variance.squeeze() for d in dists], 0)
assert len(means.shape) == 1 and len(vars.shape) == 1
dist = torch.distributions.Normal(means, vars.sqrt())
#logprobs = torch.cat([d.log_prob(x) for d in dists], 0)
logprobs = dist.log_prob(x)
if full_range is not None:
used_weight = 1. - (dist.cdf(torch.tensor(full_range[0])) + (1.-dist.cdf(torch.tensor(full_range[1]))))
if torch.isinf(-torch.log(used_weight)).any() or torch.isinf(torch.log(used_weight)).any():
print('factor is inf', -torch.log(used_weight))
logprobs -= torch.log(used_weight)
assert len(logprobs.shape) == 1
#print(logprobs)
return torch.logsumexp(logprobs, 0) - math.log(len(logprobs))
def evaluate_(x, y, y_non_noisy, hyperparameters=None, device=default_device, num_samples=100, warmup_steps=300,
full_range=None, min_seq_len=0, use_likelihood=False):
with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))), gpytorch.settings.fast_pred_var(False):
x = x.to(device)
y = y.to(device)
start_time = time.time()
losses_after_t = [.0] if min_seq_len == 0 else []
all_losses = []
for t in range(max(min_seq_len,1), len(x)):
#print('Timestep', t)
loss_sum = 0.
step_losses = []
start_step = time.time()
for b_i in range(x.shape[1]):
done = 0
while done < 1:
try:
model, likelihood = get_mcmc_model(x[:t, b_i], y[:t, b_i], hyperparameters, device, num_samples=num_samples, warmup_steps=warmup_steps)
model.eval()
with torch.no_grad():
dists = model(x[t, b_i, :].unsqueeze(
0)) # TODO check what is going on here! Does the GP interpret the input wrong?
if use_likelihood:
dists = likelihood(dists)
l = -get_mean_logdensity([dists], y[t, b_i], full_range)
done = 1
except Exception as e:
done -= 1
print('Trying again..')
print(traceback.format_exc())
print(e)
finally:
if done < -10:
print('Too many retries...')
exit()
step_losses.append(l.item())
#print('loss',l.item())
print(f'current average loss at step {t} is {sum(step_losses)/len(step_losses)} with {(time.time()-start_step)/len(step_losses)} s per eval.')
loss_sum += l
loss_sum /= x.shape[1]
all_losses.append(step_losses)
print(f'loss after step {t} is {loss_sum}')
losses_after_t.append(loss_sum)
print(f'losses so far {torch.tensor(losses_after_t)}')
return torch.tensor(losses_after_t), time.time() - start_time, all_losses
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int)
parser.add_argument('--seq_len', type=int)
parser.add_argument('--min_seq_len', type=int, default=0)
parser.add_argument('--warmup_steps', type=int)
parser.add_argument('--num_samples', type=int)
parser.add_argument('--min_y', type=int)
parser.add_argument('--max_y', type=int)
parser.add_argument('--dim', type=int, default=1)
parser.add_argument('--use_likelihood', default=True, type=bool)
parser.add_argument('--device', default='cpu')
parser.add_argument('--outputscale_concentraion', default=2., type=float)
parser.add_argument('--noise_concentration', default=1.1, type=float)
parser.add_argument('--noise_rate', default=.05, type=float)
args = parser.parse_args()
print('min_y:', args.min_y)
full_range = (None if args.min_y is None else (args.min_y,args.max_y))
hps = {'outputscale_concentration': args.outputscale_concentraion, 'noise_concentration': args.noise_concentration,
'noise_rate': args.noise_rate, 'fast_computations': (False,False,False)}
x, y, _ = get_batch(args.batch_size, args.seq_len, args.dim, fix_to_range=full_range, hyperparameters=hps)
print('RESULT:', evaluate_(x, y, y, device=args.device, warmup_steps=args.warmup_steps,
num_samples=args.num_samples, full_range=full_range, min_seq_len=args.min_seq_len,
hyperparameters=hps, use_likelihood=args.use_likelihood))