transformers-can-do-bayesian-inference / prior-fitting /mcmc_svi_transformer_on_bayesian.py
Samuel Mueller
working locally
f50f696
import scipy.stats as st
from train import Losses
import argparse
import os
from tqdm import tqdm
import time
import torch
import numpy as np
import matplotlib.pyplot as plt
import pyro
import pyro.distributions as dist
from pyro.nn import PyroModule, PyroSample
import torch.nn as nn
from pyro.infer.autoguide import AutoDiagonalNormal
from pyro.infer import SVI, Trace_ELBO, Predictive, MCMC, NUTS
from pyro import infer
import matplotlib.gridspec as gridspec
import os.path
import glob
from train import train, get_weighted_single_eval_pos_sampler
import priors
import encoders
from pyro.infer import SVGD, RBFSteinKernel
class CausalModel(PyroModule):
def __init__(self, model_spec, device='cuda'):
super().__init__()
self.device = device
self.num_features = model_spec['num_features']
mu, sigma = torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)
self.fc1 = PyroModule[nn.Linear](self.num_features, model_spec['embed'])
self.drop = pyro.sample('drop', dist.Categorical(probs=torch.tensor([0.5, 0.5]).expand([model_spec['embed'], self.num_features, 2]))).float()
self.fc1.weight = PyroSample(dist.Normal(mu, 0.0000001+self.drop).expand([model_spec['embed'], self.num_features]).to_event(2))
self.fc1.bias = PyroSample(dist.Normal(mu, sigma).expand([model_spec['embed']]).to_event(1))
self.fc2 = PyroModule[nn.Linear](model_spec['embed'], 2)
self.fc2.weight = PyroSample(dist.Normal(mu, sigma).expand([2, model_spec['embed']]).to_event(2))
self.fc2.bias = PyroSample(dist.Normal(mu, sigma).expand([2]).to_event(1))
self.model = torch.nn.Sequential(self.fc1, self.fc2)
self.to(self.device)
def forward(self, x=None, y=None, seq_len=1):
if x is None:
with pyro.plate("x_plate", seq_len):
d_ = dist.Normal(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)).expand(
[self.num_features]).to_event(1)
x = pyro.sample("x", d_)
out = self.model(x)
mu = out.squeeze()
softmax = torch.nn.Softmax(dim=1)
# sigma = pyro.sample("sigma", dist.Uniform(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)))
with pyro.plate("data", out.shape[0]):
# d_ = dist.Normal(mu, sigma)
# obs = pyro.sample("obs", d_, obs=y)
s = softmax(mu)
obs = pyro.sample('obs', dist.Categorical(probs=s), obs=y).float()
return x, obs
class BayesianModel(PyroModule):
def __init__(self, model_spec, device='cuda'):
super().__init__()
self.device = device
self.num_features = model_spec['num_features']
mu, sigma = torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)
self.fc1 = PyroModule[nn.Linear](self.num_features, model_spec['embed'])
self.fc1.weight = PyroSample(
dist.Normal(mu, sigma).expand([model_spec['embed'], self.num_features]).to_event(2))
self.fc1.bias = PyroSample(dist.Normal(mu, sigma).expand([model_spec['embed']]).to_event(1))
self.fc2 = PyroModule[nn.Linear](model_spec['embed'], 2)
self.fc2.weight = PyroSample(dist.Normal(mu, sigma).expand([2, model_spec['embed']]).to_event(2))
self.fc2.bias = PyroSample(dist.Normal(mu, sigma).expand([2]).to_event(1))
self.model = torch.nn.Sequential(self.fc1, self.fc2)
self.to(self.device)
def forward(self, x=None, y=None, seq_len=1):
if x is None:
with pyro.plate("x_plate", seq_len):
d_ = dist.Normal(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)).expand(
[self.num_features]).to_event(1)
x = pyro.sample("x", d_)
out = self.model(x)
mu = out.squeeze()
softmax = torch.nn.Softmax(dim=1)
# sigma = pyro.sample("sigma", dist.Uniform(torch.tensor([0.0]).to(self.device), torch.tensor([1.0]).to(self.device)))
with pyro.plate("data", out.shape[0]):
# d_ = dist.Normal(mu, sigma)
# obs = pyro.sample("obs", d_, obs=y)
s = softmax(mu)
obs = pyro.sample('obs', dist.Categorical(probs=s), obs=y).float()
return x, obs
def get_transformer_config(model_spec):
return {'lr': 2.006434218345026e-05
, 'epochs': 400
, 'dropout': 0.0
, 'emsize': 256
, 'batch_size': 256
, 'nlayers': 5
, 'num_outputs': 1
, 'num_features': model_spec['num_features']
, 'steps_per_epoch': 100
, 'nhead': 4
, 'dropout': 0.0
, 'seq_len': model_spec['seq_len']
, 'nhid_factor': 2}
def get_model(model_generator, config, should_train=True, device='cuda'):
epochs = 0 if not should_train else config['epochs']
model = train(priors.pyro.DataLoader
, Losses.bce
, encoders.Linear
, emsize=config['emsize']
, nhead=config['nhead']
, y_encoder_generator=encoders.Linear
, pos_encoder_generator=None
, batch_size=config['batch_size']
, nlayers=config['nlayers']
, nhid=config['emsize'] * config['nhid_factor']
, epochs=epochs
, warmup_epochs=config['epochs'] // 4
, bptt=config['seq_len']
, gpu_device=device
, dropout=config['dropout']
, steps_per_epoch=config['steps_per_epoch']
, single_eval_pos_gen=get_weighted_single_eval_pos_sampler(100)
, extra_prior_kwargs_dict={
'num_outputs': config['num_outputs']
, 'num_features': config['num_features']
, 'canonical_args': None
, 'fuse_x_y': False
, 'model': model_generator
}
, lr=config['lr']
, verbose=True)
return model
def plot_features(data, targets):
fig2 = plt.figure(constrained_layout=True, figsize=(12, 12))
spec2 = gridspec.GridSpec(ncols=data.shape[1], nrows=data.shape[1], figure=fig2)
for d in range(0, data.shape[1]):
for d2 in range(0, data.shape[1]):
sub_ax = fig2.add_subplot(spec2[d, d2])
sub_ax.scatter(data[:, d].detach().cpu().numpy(), data[:, d2].detach().cpu().numpy(),
c=targets[:].detach().cpu().numpy())
def evaluate_preds(preds, y_test):
preds_hard = preds['obs'] > 0.5 # TODO: 0.5 or 0
acc = (preds_hard == y_test).float().mean()
means = preds_hard.float().mean(axis=0)
# var = preds['obs'].var(axis=0)
nll = nn.BCELoss()(means.float(), y_test.float())
mse = Losses.mse(means, y_test).mean()
return acc, nll, mse
def load_results(path, task='steps'):
results_nll = []
results_acc = []
times = []
samples_list = []
files = glob.glob(f'/home/hollmann/prior-fitting/{path}_*.npy')
for file in files:
print(file)
with open(file, 'rb') as f:
if task == 'steps':
nll, acc, elapsed = np.load(f, allow_pickle=True)
samples_list += [file]
else:
samples, nll, acc, elapsed = np.load(f, allow_pickle=True)
samples_list += [samples]
times += [elapsed]
results_nll += [nll]
results_acc += [acc]
results_acc = np.array(results_acc)
results_nll = np.array(results_nll)
times = np.array(times)
files = np.array(files)
samples = np.array(samples_list)
means = np.array([compute_mean_and_conf_interval(results_nll[n, :])[0] for n in range(0, results_nll.shape[0])])
conf = np.array([compute_mean_and_conf_interval(results_nll[n, :])[1] for n in range(0, results_nll.shape[0])])
if task == 'steps':
sorter = np.argsort(times, axis=0)
else:
sorter = np.argsort(samples, axis=0)
results_nll, results_acc, times, files, samples, means, conf = results_nll[sorter], results_acc[sorter], times[sorter], files[sorter], samples[sorter], means[sorter], conf[sorter]
return files, times, samples, means, conf
def plot_with_confidence_intervals(ax_or_pyplot, x, mean, confidence, **common_kwargs):
ax_or_pyplot.plot(x,mean,**common_kwargs)
if 'label' in common_kwargs:
common_kwargs.pop('label')
if 'marker' in common_kwargs:
common_kwargs.pop('marker')
ax_or_pyplot.fill_between(x, (mean-confidence), (mean+confidence), alpha=.1, **common_kwargs)
def compute_mean_and_conf_interval(accuracies, confidence=.95):
accuracies = np.array(accuracies)
n = len(accuracies)
m, se = np.mean(accuracies), st.sem(accuracies)
h = se * st.t.ppf((1 + confidence) / 2., n - 1)
return m, h
def generate_toy_data(model, bptt, device='cpu'):
n_samples = 100
X_list, y_list = [], []
torch.manual_seed(0)
for _ in range(0, n_samples):
X_sample, y_sample = model(seq_len=bptt)
X_list += [X_sample]
y_list += [y_sample]
X = torch.stack(X_list, 0)
y = torch.stack(y_list, 0)
# y = (y > 0).float()
return X.to(device), y.to(device)
def eval_svi(X, y, device, model_sampler, training_samples_n, num_train_steps, num_pred_samples, lr=1e-3, num_particles=1, svgd=False):
X_test, y_test = X[:, training_samples_n:], y[:, training_samples_n:]
X_train, y_train = X[:, 0:training_samples_n], y[:, 0:training_samples_n]
nll_list = []
acc_list = []
for sample_id in tqdm(list(range(0, X_test.shape[0]))):
model = model_sampler()
guide = AutoDiagonalNormal(model).to(device)
adam = pyro.optim.Adam({"lr": lr})
svi = SVI(model, guide, adam, loss=Trace_ELBO(num_particles=num_particles))
if svgd:
kernel = RBFSteinKernel()
svi = SVGD(model, kernel, adam, num_particles=50, max_plate_nesting=0)
pyro.clear_param_store()
X_test_sample, y_test_sample, X_train_sample, y_train_sample = X_test[sample_id], y_test[sample_id], X_train[
sample_id], y_train[sample_id]
acc, nll, mse = 0.0, 0.0, 0.0
# bar = tqdm(list(range(num_train_steps)))
bar = list(range(num_train_steps))
for epoch in bar:
loss = svi.step(X_train_sample, y_train_sample)
# if epoch % 100 == 1:
# bar.set_postfix(loss=f'{loss / X_train_sample.shape[0]:.3f}', test_nll=f'{nll:.3f}', test_acc=f'{acc:.3f}')
predictive = Predictive(model, guide=guide, num_samples=num_pred_samples)
preds = predictive(X_test_sample)
acc, nll, mse = evaluate_preds(preds, y_test_sample)
nll_list += [nll.detach().cpu().numpy()]
acc_list += [acc.detach().cpu().numpy()]
return np.array(nll_list), np.array(acc_list)
def eval_mcmc(X, y, device, model_sampler, training_samples_n, warmup_steps, num_pred_samples):
X_test, y_test = X[:, training_samples_n:].to(device), y[:, training_samples_n:].to(device)
X_train, y_train = X[:, 0:training_samples_n].to(device), y[:, 0:training_samples_n].to(device)
acc_list, nll_list = [], []
for sample_id in tqdm(list(range(0, X_test.shape[0]))):
X_test_sample, y_test_sample, X_train_sample, y_train_sample = X_test[sample_id], y_test[sample_id], X_train[
sample_id], y_train[sample_id]
model = model_sampler()
mcmc = MCMC(NUTS(model), num_samples=num_pred_samples, num_chains=1, disable_progbar=True,
warmup_steps=warmup_steps, mp_context="fork")
mcmc.run(X_train_sample, y_train_sample)
preds = infer.mcmc.util.predictive(model, mcmc.get_samples(), X_test_sample, None)
acc, nll, mse = evaluate_preds(preds, y_test_sample)
nll_list += [nll.detach().cpu().numpy()]
acc_list += [acc.detach().cpu().numpy()]
return np.array(nll_list), np.array(acc_list)
def eval_transformer(X, y, device, model, training_samples_n):
X_sample, y_sample = X.transpose(0, 1), y.transpose(0, 1).float()
bs = 1
samples = []
for i in range(0, X_sample.shape[1] // bs):
samples += [(X_sample[:, bs * i:bs * (i + 1)], y_sample[:, bs * i:bs * (i + 1)])]
mean = X_sample[:training_samples_n].mean(0)
std = X_sample[:training_samples_n].std(0) + .000001
X_sample = (X_sample - mean) / std
start = time.time()
output = torch.cat(
[model.to(device)((X_sample_chunk, y_sample_chunk), single_eval_pos=training_samples_n).squeeze(-1) for
(X_sample_chunk, y_sample_chunk) in samples], 1)
elapsed = time.time() - start
output = output.detach().cpu()
acc = ((torch.sigmoid(output) > 0.5) == y_sample[training_samples_n:].cpu().bool()).float().mean(axis=0)
nll = nn.BCELoss(reduction='none')(torch.sigmoid(output.float()), y_sample[training_samples_n:].cpu().float()).mean(
axis=0)
return acc, nll, elapsed
def training_steps(method, X, y, model_spec, device='cpu', path_interfix='', overwrite=False):
training_samples_n = 100
for s in [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]:
path = f'/home/hollmann/prior-fitting/{path_interfix}/results_{method}_training_steps_{s}.npy'
if (os.path.isfile(path)) and not overwrite:
print(f'already done {s}')
continue
start = time.time()
if method == 'svi':
nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=s, num_pred_samples=s, svgd=False)
elif method == 'svgd':
nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=s, num_pred_samples=s, svgd=True)
elif method == 'mcmc':
nll, acc = eval_mcmc(X, y, device, model_spec, training_samples_n, warmup_steps=s, num_pred_samples=s)
elapsed = time.time() - start
print(s)
print('NLL ', compute_mean_and_conf_interval(nll))
print('ACC ', compute_mean_and_conf_interval(acc))
print('TIME ', elapsed)
with open(path, 'wb') as f:
np.save(f, (np.array(nll), np.array(acc), elapsed))
print(f'Saved results at {path}')
def training_samples(method, X, y, model_spec, evaluation_points, steps = None, device='cpu', path_interfix='', overwrite=False):
num_pred_samples_mcmc = steps if steps else 512
warmup_steps = steps if steps else 512
num_pred_samples_svi = steps if steps else 1024
num_train_steps = steps if steps else 1024
num_pred_samples = num_pred_samples_svi if method == 'svi' else num_pred_samples_mcmc
for training_samples_n in evaluation_points:
path = f'/home/hollmann/prior-fitting/{path_interfix}/results_{method}_{num_pred_samples}_training_samples_{training_samples_n}.npy'
if (os.path.isfile(path)) and not overwrite:
print(f'already done {training_samples_n}')
continue
start = time.time()
if method == 'svi':
nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=num_train_steps, num_pred_samples=num_pred_samples)
elif method == 'svgd':
nll, acc = eval_svi(X, y, device, model_spec, training_samples_n, num_train_steps=num_train_steps, num_pred_samples=num_pred_samples, svgd=True)
elif method == 'mcmc':
nll, acc = eval_mcmc(X, y, device, model_spec, training_samples_n, warmup_steps=warmup_steps, num_pred_samples=num_pred_samples)
elapsed = time.time() - start
print('NLL ', compute_mean_and_conf_interval(nll))
print('ACC ', compute_mean_and_conf_interval(acc))
print('TIME ', elapsed)
with open(path, 'wb') as f:
np.save(f, (training_samples_n, np.array(nll), np.array(acc), elapsed))
### MAIN
def get_default_model_spec(size):
bptt = 300
if size == 'big':
num_features = 8
embed = 64
nlayers = 2
elif size == 'small':
num_features = 3
embed = 5
nlayers = 2
else:
num_features = int(size.split("_")[0])
embed = int(size.split("_")[1])
nlayers = int(size.split("_")[2])
return {'nlayers': nlayers, 'embed': embed, 'num_features': num_features, "seq_len": bptt}
def get_default_evaluation_points():
return list(range(2, 100, 5))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--solver', default='svi', type=str)
parser.add_argument('--task', default='steps', type=str)
parser.add_argument('--model_size', default='small', type=str)
args = parser.parse_args()
model_spec = get_default_model_spec(args.model_size)
evaluation_points = get_default_evaluation_points()
device = 'cuda:0' if args.solver == 'svi' else 'cpu'
torch.manual_seed(0)
test_model = BayesianModel(model_spec, device=device)
X, y = generate_toy_data(test_model, model_spec['seq_len'])
model_sampler = lambda: BayesianModel(model_spec, device=device)
if args.task == 'steps':
training_steps(args.solver, X, y, model_sampler, device=device,
path_interfix=f'results/timing_{args.model_size}_model', svgd=args.svgd)
elif args.task == 'samples':
training_samples(args.solver, X, y, model_sampler, evaluation_points, device=device,
path_interfix=f'results/timing_{args.model_size}_model', svgd=args.svgd)