Samuel Mueller
commited on
Commit
·
0a04eb5
1
Parent(s):
f50f696
more description, larger font
Browse files- SettingUpTheWebiste.ipynb +0 -0
- app.py +8 -4
SettingUpTheWebiste.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
app.py
CHANGED
@@ -51,7 +51,6 @@ def mean_and_bounds_for_pnf(x,y,test_xs, choice):
|
|
51 |
sys.path.append('prior-fitting/')
|
52 |
model = torch.load(f'onefeature_gp_ls.1_pnf_{choice}.pt')
|
53 |
|
54 |
-
|
55 |
logits = model((torch.cat([x,test_xs],0).unsqueeze(1),y.unsqueeze(1)),single_eval_pos=len(x))
|
56 |
bounds = model.criterion.quantile(logits,center_prob=.682).squeeze(1)
|
57 |
return model.criterion.mean(logits).squeeze(1), bounds[:,0], bounds[:,1]
|
@@ -75,7 +74,7 @@ def infer(table, choice):
|
|
75 |
return excuse, None
|
76 |
x = torch.tensor(table[:,0]).unsqueeze(1)
|
77 |
y = torch.tensor(table[:,1])
|
78 |
-
fig = plt.figure()
|
79 |
|
80 |
if len(x) > 4:
|
81 |
return excuse_max_examples, None
|
@@ -95,10 +94,15 @@ def infer(table, choice):
|
|
95 |
|
96 |
return '', plt.gcf()
|
97 |
|
98 |
-
iface = gr.Interface(fn=infer,
|
|
|
|
|
|
|
|
|
|
|
99 |
inputs=[
|
100 |
gr.inputs.Dataframe(headers=["x", "y"], datatype=["number", "number"], row_count=2, type='numpy', default=[['.25','.1'],['.75','.4']]),
|
101 |
-
gr.inputs.Radio(['160K','800K','4M'], type="value", default='4M', label='Training Costs')
|
102 |
], outputs=["text","plot"])
|
103 |
iface.launch()
|
104 |
|
|
|
51 |
sys.path.append('prior-fitting/')
|
52 |
model = torch.load(f'onefeature_gp_ls.1_pnf_{choice}.pt')
|
53 |
|
|
|
54 |
logits = model((torch.cat([x,test_xs],0).unsqueeze(1),y.unsqueeze(1)),single_eval_pos=len(x))
|
55 |
bounds = model.criterion.quantile(logits,center_prob=.682).squeeze(1)
|
56 |
return model.criterion.mean(logits).squeeze(1), bounds[:,0], bounds[:,1]
|
|
|
74 |
return excuse, None
|
75 |
x = torch.tensor(table[:,0]).unsqueeze(1)
|
76 |
y = torch.tensor(table[:,1])
|
77 |
+
fig = plt.figure(figsize=(4,2),dpi=1000)
|
78 |
|
79 |
if len(x) > 4:
|
80 |
return excuse_max_examples, None
|
|
|
94 |
|
95 |
return '', plt.gcf()
|
96 |
|
97 |
+
iface = gr.Interface(fn=infer,
|
98 |
+
title='GP Posterior Approximation with Transformers',
|
99 |
+
description='''This is a demo of PFNs as we describe them in our recent paper (https://openreview.net/forum?id=KSugKcbNf9).
|
100 |
+
Lines represent means and shaded areas are the confidence interval (68.2% quantile). In green, we have the ground truth GP posterior and in blue we have our approximation.
|
101 |
+
We provide three models that are architecturally the same, but with different training budgets.
|
102 |
+
''',
|
103 |
inputs=[
|
104 |
gr.inputs.Dataframe(headers=["x", "y"], datatype=["number", "number"], row_count=2, type='numpy', default=[['.25','.1'],['.75','.4']]),
|
105 |
+
gr.inputs.Radio(['160K','800K','4M'], type="value", default='4M', label='Number of Sampled Datasets in Training (Training Costs)')
|
106 |
], outputs=["text","plot"])
|
107 |
iface.launch()
|
108 |
|