|
import io |
|
import re |
|
from collections.abc import Iterable |
|
|
|
import pandas as pd |
|
import streamlit as st |
|
from pandas.api.types import is_bool_dtype, is_datetime64_any_dtype, is_numeric_dtype |
|
|
|
GITHUB_URL = "https://github.com/msamwelmollel/Swahili_LLM_Leaderboard" |
|
NON_BENCHMARK_COLS = ["Open?", "Publisher"] |
|
|
|
|
|
def extract_table_and_format_from_markdown_text(markdown_table: str) -> pd.DataFrame: |
|
"""Extracts a table from a markdown text and formats it as a pandas DataFrame. |
|
Args: |
|
text (str): Markdown text containing a table. |
|
Returns: |
|
pd.DataFrame: Table as pandas DataFrame. |
|
""" |
|
df = ( |
|
pd.read_table(io.StringIO(markdown_table), sep="|", header=0, index_col=1) |
|
.dropna(axis=1, how="all") |
|
.iloc[1:] |
|
.sort_index(ascending=True) |
|
.apply(lambda x: x.str.strip() if x.dtype == "object" else x) |
|
.replace("", float("NaN")) |
|
.astype(float, errors="ignore") |
|
) |
|
|
|
|
|
df.columns = df.columns.str.strip() |
|
df.index = df.index.str.strip() |
|
df.index.name = df.index.name.strip() |
|
|
|
return df |
|
|
|
|
|
def extract_markdown_table_from_multiline(multiline: str, table_headline: str, next_headline_start: str = "#") -> str: |
|
"""Extracts the markdown table from a multiline string. |
|
Args: |
|
multiline (str): content of README.md file. |
|
table_headline (str): Headline of the table in the README.md file. |
|
next_headline_start (str, optional): Start of the next headline. Defaults to "#". |
|
Returns: |
|
str: Markdown table. |
|
Raises: |
|
ValueError: If the table could not be found. |
|
""" |
|
|
|
table = [] |
|
start = False |
|
for line in multiline.split("\n"): |
|
if line.startswith(table_headline): |
|
start = True |
|
elif line.startswith(next_headline_start): |
|
start = False |
|
elif start: |
|
table.append(line + "\n") |
|
|
|
if len(table) == 0: |
|
raise ValueError(f"Could not find table with headline '{table_headline}'") |
|
|
|
return "".join(table) |
|
|
|
|
|
def remove_markdown_links(text: str) -> str: |
|
"""Modifies a markdown text to remove all markdown links. |
|
Example: [DISPLAY](LINK) to DISPLAY |
|
First find all markdown links with regex. |
|
Then replace them with: $1 |
|
Args: |
|
text (str): Markdown text containing markdown links |
|
Returns: |
|
str: Markdown text without markdown links. |
|
""" |
|
|
|
|
|
markdown_links = re.findall(r"\[([^\]]+)\]\(([^)]+)\)", text) |
|
|
|
|
|
for display, link in markdown_links: |
|
text = text.replace(f"[{display}]({link})", display) |
|
|
|
return text |
|
|
|
|
|
def filter_dataframe_by_row_and_columns(df: pd.DataFrame, ignore_columns: list[str] | None = None) -> pd.DataFrame: |
|
""" |
|
Filter dataframe by the rows and columns to display. |
|
This does not select based on the values in the dataframe, but rather on the index and columns. |
|
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/ |
|
Args: |
|
df (pd.DataFrame): Original dataframe |
|
ignore_columns (list[str], optional): Columns to ignore. Defaults to None. |
|
Returns: |
|
pd.DataFrame: Filtered dataframe |
|
""" |
|
df = df.copy() |
|
|
|
if ignore_columns is None: |
|
ignore_columns = [] |
|
|
|
modification_container = st.container() |
|
|
|
with modification_container: |
|
to_filter_index = st.multiselect("Filter by model:", sorted(df.index)) |
|
if to_filter_index: |
|
df = pd.DataFrame(df.loc[to_filter_index]) |
|
|
|
to_filter_columns = st.multiselect( |
|
"Filter by benchmark:", sorted([c for c in df.columns if c not in ignore_columns]) |
|
) |
|
if to_filter_columns: |
|
df = pd.DataFrame(df[ignore_columns + to_filter_columns]) |
|
|
|
return df |
|
|
|
|
|
def filter_dataframe_by_column_values(df: pd.DataFrame) -> pd.DataFrame: |
|
""" |
|
Filter dataframe by the values in the dataframe. |
|
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/ |
|
Args: |
|
df (pd.DataFrame): Original dataframe |
|
Returns: |
|
pd.DataFrame: Filtered dataframe |
|
""" |
|
df = df.copy() |
|
|
|
modification_container = st.container() |
|
|
|
with modification_container: |
|
to_filter_columns = st.multiselect("Filter results on:", df.columns) |
|
left, right = st.columns((1, 20)) |
|
|
|
for column in to_filter_columns: |
|
if is_bool_dtype(df[column]): |
|
user_bool_input = right.checkbox(f"{column}", value=True) |
|
df = df[df[column] == user_bool_input] |
|
|
|
elif is_numeric_dtype(df[column]): |
|
_min = float(df[column].min()) |
|
_max = float(df[column].max()) |
|
|
|
if (_min != _max) and pd.notna(_min) and pd.notna(_max): |
|
step = 0.01 |
|
user_num_input = right.slider( |
|
f"Values for {column}:", |
|
min_value=round(_min - step, 2), |
|
max_value=round(_max + step, 2), |
|
value=(_min, _max), |
|
step=step, |
|
) |
|
df = df[df[column].between(*user_num_input)] |
|
|
|
elif is_datetime64_any_dtype(df[column]): |
|
user_date_input = right.date_input( |
|
f"Values for {column}:", |
|
value=( |
|
df[column].min(), |
|
df[column].max(), |
|
), |
|
) |
|
if isinstance(user_date_input, Iterable) and len(user_date_input) == 2: |
|
user_date_input_datetime = tuple(map(pd.to_datetime, user_date_input)) |
|
start_date, end_date = user_date_input_datetime |
|
df = df.loc[df[column].between(start_date, end_date)] |
|
|
|
else: |
|
selected_values = right.multiselect( |
|
f"Values for {column}:", |
|
sorted(df[column].unique()), |
|
) |
|
|
|
if selected_values: |
|
df = df[df[column].isin(selected_values)] |
|
|
|
return df |
|
|
|
|
|
def setup_basic(): |
|
title = "π LLM-Leaderboard" |
|
|
|
st.set_page_config( |
|
page_title=title, |
|
page_icon="π", |
|
layout="wide", |
|
) |
|
st.title(title) |
|
|
|
st.markdown( |
|
"A joint community effort to create one central leaderboard for LLMs." |
|
f" Visit [swahili-llm-leaderboard]({GITHUB_URL}) to contribute. \n" |
|
'We refer to a model being "open" if it can be locally deployed and used for commercial purposes.' |
|
) |
|
|
|
|
|
def setup_leaderboard(readme: str): |
|
leaderboard_table = extract_markdown_table_from_multiline(readme, table_headline="## Leaderboard") |
|
leaderboard_table = remove_markdown_links(leaderboard_table) |
|
df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table) |
|
df_leaderboard["Open?"] = df_leaderboard["Open?"].map({"yes": 1, "no": 0}).astype(bool) |
|
|
|
st.markdown("## Leaderboard") |
|
modify = st.checkbox("Add filters") |
|
clear_empty_entries = st.checkbox("Clear empty entries", value=True) |
|
|
|
if modify: |
|
df_leaderboard = filter_dataframe_by_row_and_columns(df_leaderboard, ignore_columns=NON_BENCHMARK_COLS) |
|
df_leaderboard = filter_dataframe_by_column_values(df_leaderboard) |
|
|
|
if clear_empty_entries: |
|
df_leaderboard = df_leaderboard.dropna(axis=1, how="all") |
|
benchmark_columns = [c for c in df_leaderboard.columns if df_leaderboard[c].dtype == float] |
|
rows_wo_any_benchmark = df_leaderboard[benchmark_columns].isna().all(axis=1) |
|
df_leaderboard = df_leaderboard[~rows_wo_any_benchmark] |
|
|
|
st.dataframe(df_leaderboard) |
|
|
|
st.download_button( |
|
"Download current selection as .html", |
|
df_leaderboard.to_html().encode("utf-8"), |
|
"leaderboard.html", |
|
"text/html", |
|
key="download-html", |
|
) |
|
|
|
st.download_button( |
|
"Download current selection as .csv", |
|
df_leaderboard.to_csv().encode("utf-8"), |
|
"leaderboard.csv", |
|
"text/csv", |
|
key="download-csv", |
|
) |
|
|
|
|
|
def setup_benchmarks(readme: str): |
|
benchmarks_table = extract_markdown_table_from_multiline(readme, table_headline="## Benchmarks") |
|
df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table) |
|
|
|
st.markdown("## Covered Benchmarks") |
|
|
|
selected_benchmark = st.selectbox("Select a benchmark to learn more:", df_benchmarks.index.unique()) |
|
df_selected = df_benchmarks.loc[selected_benchmark] |
|
text = [ |
|
f"Name: {selected_benchmark}", |
|
] |
|
for key in df_selected.keys(): |
|
text.append(f"{key}: {df_selected[key]} ") |
|
st.markdown(" \n".join(text)) |
|
|
|
|
|
def setup_sources(): |
|
st.markdown("## Sources") |
|
st.markdown( |
|
"The results of this leaderboard are collected from the individual papers and published results of the model " |
|
"authors. If you are interested in the sources of each individual reported model value, please visit the " |
|
f"[llm-leaderboard]({GITHUB_URL}) repository." |
|
) |
|
st.markdown( |
|
""" |
|
Special thanks to the following pages: |
|
- [MosaicML - Model benchmarks](https://www.mosaicml.com/blog/mpt-7b) |
|
- [lmsys.org - Chatbot Arena benchmarks](https://lmsys.org/blog/2023-05-03-arena/) |
|
- [Papers With Code](https://paperswithcode.com/) |
|
- [Stanford HELM](https://crfm.stanford.edu/helm/latest/) |
|
- [HF Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
""" |
|
) |
|
|
|
def setup_Contribution(): |
|
st.markdown("## How to Contribute") |
|
|
|
markdown_content = """ |
|
- Model name (don't forget the links): |
|
- Filling in missing entries |
|
- Adding a new model as a new row to the leaderboard. Please keep the descending order. |
|
- Adding a new benchmark as a new column in the leaderboard and adding the benchmark to the benchmarks table. Please keep the descending order. |
|
- Code work: |
|
- Improving the existing code |
|
- Requesting and implementing new features |
|
""" |
|
st.markdown(markdown_content) |
|
|
|
def setup_Sponsorship(): |
|
st.markdown("## Sponsorship") |
|
st.markdown( |
|
|
|
|
|
|
|
"The benchmark is English-based, and we need support translating it into Swahili." |
|
"We welcome sponsorships to help advance this endeavor." |
|
"Your sponsorship would facilitate this essential translation effort, bridging language barriers and making the benchmark " |
|
"accessible to a broader audience. We're grateful for the dedication shown by our collaborators and aim to extend this impact " |
|
"further with the support of sponsors committed to advancing language technologies." |
|
"Any support please reach me: [email protected]" |
|
) |
|
|
|
|
|
def setup_disclaimer(): |
|
st.markdown("## Disclaimer") |
|
st.markdown( |
|
"Above information may be wrong. If you want to use a published model for commercial use, please contact a " |
|
"lawyer." |
|
) |
|
|
|
|
|
def setup_footer(): |
|
st.markdown( |
|
""" |
|
--- |
|
Made with β€οΈ by the awesome open-source community from all over π. |
|
""" |
|
) |
|
|
|
|
|
def main(): |
|
setup_basic() |
|
|
|
with open("README.md", "r") as f: |
|
readme = f.read() |
|
|
|
|
|
setup_leaderboard(readme) |
|
|
|
|
|
|
|
|
|
setup_Contribution() |
|
setup_Sponsorship() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |