Spaces:
Running
Running
import numpy as np | |
import pandas as pd | |
import plotly.graph_objects as go | |
import math | |
from umap import UMAP | |
from typing import List, Union | |
def visualize_hierarchical_documents(topic_model, | |
docs: List[str], | |
hierarchical_topics: pd.DataFrame, | |
topics: List[int] = None, | |
embeddings: np.ndarray = None, | |
reduced_embeddings: np.ndarray = None, | |
sample: Union[float, int] = None, | |
hide_annotations: bool = False, | |
hide_document_hover: bool = True, | |
nr_levels: int = 10, | |
level_scale: str = 'linear', | |
custom_labels: Union[bool, str] = False, | |
title: str = "<b>Hierarchical Documents and Topics</b>", | |
width: int = 1200, | |
height: int = 750) -> go.Figure: | |
""" Visualize documents and their topics in 2D at different levels of hierarchy | |
Arguments: | |
docs: The documents you used when calling either `fit` or `fit_transform` | |
hierarchical_topics: A dataframe that contains a hierarchy of topics | |
represented by their parents and their children | |
topics: A selection of topics to visualize. | |
Not to be confused with the topics that you get from `.fit_transform`. | |
For example, if you want to visualize only topics 1 through 5: | |
`topics = [1, 2, 3, 4, 5]`. | |
embeddings: The embeddings of all documents in `docs`. | |
reduced_embeddings: The 2D reduced embeddings of all documents in `docs`. | |
sample: The percentage of documents in each topic that you would like to keep. | |
Value can be between 0 and 1. Setting this value to, for example, | |
0.1 (10% of documents in each topic) makes it easier to visualize | |
millions of documents as a subset is chosen. | |
hide_annotations: Hide the names of the traces on top of each cluster. | |
hide_document_hover: Hide the content of the documents when hovering over | |
specific points. Helps to speed up generation of visualizations. | |
nr_levels: The number of levels to be visualized in the hierarchy. First, the distances | |
in `hierarchical_topics.Distance` are split in `nr_levels` lists of distances. | |
Then, for each list of distances, the merged topics are selected that have a | |
distance less or equal to the maximum distance of the selected list of distances. | |
NOTE: To get all possible merged steps, make sure that `nr_levels` is equal to | |
the length of `hierarchical_topics`. | |
level_scale: Whether to apply a linear or logarithmic (log) scale levels of the distance | |
vector. Linear scaling will perform an equal number of merges at each level | |
while logarithmic scaling will perform more mergers in earlier levels to | |
provide more resolution at higher levels (this can be used for when the number | |
of topics is large). | |
custom_labels: If bool, whether to use custom topic labels that were defined using | |
`topic_model.set_topic_labels`. | |
If `str`, it uses labels from other aspects, e.g., "Aspect1". | |
NOTE: Custom labels are only generated for the original | |
un-merged topics. | |
title: Title of the plot. | |
width: The width of the figure. | |
height: The height of the figure. | |
Examples: | |
To visualize the topics simply run: | |
```python | |
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics) | |
``` | |
Do note that this re-calculates the embeddings and reduces them to 2D. | |
The advised and prefered pipeline for using this function is as follows: | |
```python | |
from sklearn.datasets import fetch_20newsgroups | |
from sentence_transformers import SentenceTransformer | |
from bertopic import BERTopic | |
from umap import UMAP | |
# Prepare embeddings | |
docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data'] | |
sentence_model = SentenceTransformer("all-MiniLM-L6-v2") | |
embeddings = sentence_model.encode(docs, show_progress_bar=False) | |
# Train BERTopic and extract hierarchical topics | |
topic_model = BERTopic().fit(docs, embeddings) | |
hierarchical_topics = topic_model.hierarchical_topics(docs) | |
# Reduce dimensionality of embeddings, this step is optional | |
# reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings) | |
# Run the visualization with the original embeddings | |
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, embeddings=embeddings) | |
# Or, if you have reduced the original embeddings already: | |
topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings) | |
``` | |
Or if you want to save the resulting figure: | |
```python | |
fig = topic_model.visualize_hierarchical_documents(docs, hierarchical_topics, reduced_embeddings=reduced_embeddings) | |
fig.write_html("path/to/file.html") | |
``` | |
NOTE: | |
This visualization was inspired by the scatter plot representation of Doc2Map: | |
https://github.com/louisgeisler/Doc2Map | |
<iframe src="../../getting_started/visualization/hierarchical_documents.html" | |
style="width:1000px; height: 770px; border: 0px;""></iframe> | |
""" | |
topic_per_doc = topic_model.topics_ | |
# Sample the data to optimize for visualization and dimensionality reduction | |
if sample is None or sample > 1: | |
sample = 1 | |
indices = [] | |
for topic in set(topic_per_doc): | |
s = np.where(np.array(topic_per_doc) == topic)[0] | |
size = len(s) if len(s) < 100 else int(len(s)*sample) | |
indices.extend(np.random.choice(s, size=size, replace=False)) | |
indices = np.array(indices) | |
df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]}) | |
df["doc"] = [docs[index] for index in indices] | |
df["topic"] = [topic_per_doc[index] for index in indices] | |
# Extract embeddings if not already done | |
if sample is None: | |
if embeddings is None and reduced_embeddings is None: | |
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document") | |
else: | |
embeddings_to_reduce = embeddings | |
else: | |
if embeddings is not None: | |
embeddings_to_reduce = embeddings[indices] | |
elif embeddings is None and reduced_embeddings is None: | |
embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document") | |
# Reduce input embeddings | |
if reduced_embeddings is None: | |
umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce) | |
embeddings_2d = umap_model.embedding_ | |
elif sample is not None and reduced_embeddings is not None: | |
embeddings_2d = reduced_embeddings[indices] | |
elif sample is None and reduced_embeddings is not None: | |
embeddings_2d = reduced_embeddings | |
# Combine data | |
df["x"] = embeddings_2d[:, 0] | |
df["y"] = embeddings_2d[:, 1] | |
# Create topic list for each level, levels are created by calculating the distance | |
distances = hierarchical_topics.Distance.to_list() | |
if level_scale == 'log' or level_scale == 'logarithmic': | |
log_indices = np.round(np.logspace(start=math.log(1,10), stop=math.log(len(distances)-1,10), num=nr_levels)).astype(int).tolist() | |
log_indices.reverse() | |
max_distances = [distances[i] for i in log_indices] | |
elif level_scale == 'lin' or level_scale == 'linear': | |
max_distances = [distances[indices[-1]] for indices in np.array_split(range(len(hierarchical_topics)), nr_levels)][::-1] | |
else: | |
raise ValueError("level_scale needs to be one of 'log' or 'linear'") | |
for index, max_distance in enumerate(max_distances): | |
# Get topics below `max_distance` | |
mapping = {topic: topic for topic in df.topic.unique()} | |
selection = hierarchical_topics.loc[hierarchical_topics.Distance <= max_distance, :] | |
selection.Parent_ID = selection.Parent_ID.astype(int) | |
selection = selection.sort_values("Parent_ID") | |
for row in selection.iterrows(): | |
for topic in row[1].Topics: | |
mapping[topic] = row[1].Parent_ID | |
# Make sure the mappings are mapped 1:1 | |
mappings = [True for _ in mapping] | |
while any(mappings): | |
for i, (key, value) in enumerate(mapping.items()): | |
if value in mapping.keys() and key != value: | |
mapping[key] = mapping[value] | |
else: | |
mappings[i] = False | |
# Create new column | |
df[f"level_{index+1}"] = df.topic.map(mapping) | |
df[f"level_{index+1}"] = df[f"level_{index+1}"].astype(int) | |
# Prepare topic names of original and merged topics | |
trace_names = [] | |
topic_names = {} | |
for topic in range(hierarchical_topics.Parent_ID.astype(int).max()): | |
if topic < hierarchical_topics.Parent_ID.astype(int).min(): | |
if topic_model.get_topic(topic): | |
if isinstance(custom_labels, str): | |
trace_name = f"{topic}_" + "_".join(list(zip(*topic_model.topic_aspects_[custom_labels][topic]))[0][:3]) | |
elif topic_model.custom_labels_ is not None and custom_labels: | |
trace_name = topic_model.custom_labels_[topic + topic_model._outliers] | |
else: | |
trace_name = f"{topic}_" + "_".join([word[:20] for word, _ in topic_model.get_topic(topic)][:3]) | |
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": trace_name[:40]} | |
trace_names.append(trace_name) | |
else: | |
trace_name = f"{topic}_" + hierarchical_topics.loc[hierarchical_topics.Parent_ID == str(topic), "Parent_Name"].values[0] | |
plot_text = "_".join([name[:20] for name in trace_name.split("_")[:3]]) | |
topic_names[topic] = {"trace_name": trace_name[:40], "plot_text": plot_text[:40]} | |
trace_names.append(trace_name) | |
# Prepare traces | |
all_traces = [] | |
for level in range(len(max_distances)): | |
traces = [] | |
# Outliers | |
if topic_model._outliers: | |
traces.append( | |
go.Scattergl( | |
x=df.loc[(df[f"level_{level+1}"] == -1), "x"], | |
y=df.loc[df[f"level_{level+1}"] == -1, "y"], | |
mode='markers+text', | |
name="other", | |
hoverinfo="text", | |
hovertext=df.loc[(df[f"level_{level+1}"] == -1), "doc"] if not hide_document_hover else None, | |
showlegend=False, | |
marker=dict(color='#CFD8DC', size=5, opacity=0.5) | |
) | |
) | |
# Selected topics | |
if topics: | |
selection = df.loc[(df.topic.isin(topics)), :] | |
unique_topics = sorted([int(topic) for topic in selection[f"level_{level+1}"].unique()]) | |
else: | |
unique_topics = sorted([int(topic) for topic in df[f"level_{level+1}"].unique()]) | |
for topic in unique_topics: | |
if topic != -1: | |
if topics: | |
selection = df.loc[(df[f"level_{level+1}"] == topic) & | |
(df.topic.isin(topics)), :] | |
else: | |
selection = df.loc[df[f"level_{level+1}"] == topic, :] | |
if not hide_annotations: | |
selection.loc[len(selection), :] = None | |
selection["text"] = "" | |
selection.loc[len(selection) - 1, "x"] = selection.x.mean() | |
selection.loc[len(selection) - 1, "y"] = selection.y.mean() | |
selection.loc[len(selection) - 1, "text"] = topic_names[int(topic)]["plot_text"] | |
traces.append( | |
go.Scattergl( | |
x=selection.x, | |
y=selection.y, | |
text=selection.text if not hide_annotations else None, | |
hovertext=selection.doc if not hide_document_hover else None, | |
hoverinfo="text", | |
name=topic_names[int(topic)]["trace_name"], | |
mode='markers+text', | |
marker=dict(size=5, opacity=0.5) | |
) | |
) | |
all_traces.append(traces) | |
# Track and count traces | |
nr_traces_per_set = [len(traces) for traces in all_traces] | |
trace_indices = [(0, nr_traces_per_set[0])] | |
for index, nr_traces in enumerate(nr_traces_per_set[1:]): | |
start = trace_indices[index][1] | |
end = nr_traces + start | |
trace_indices.append((start, end)) | |
# Visualization | |
fig = go.Figure() | |
for traces in all_traces: | |
for trace in traces: | |
fig.add_trace(trace) | |
for index in range(len(fig.data)): | |
if index >= nr_traces_per_set[0]: | |
fig.data[index].visible = False | |
# Create and add slider | |
steps = [] | |
for index, indices in enumerate(trace_indices): | |
step = dict( | |
method="update", | |
label=str(index), | |
args=[{"visible": [False] * len(fig.data)}] | |
) | |
for index in range(indices[1]-indices[0]): | |
step["args"][0]["visible"][index+indices[0]] = True | |
steps.append(step) | |
sliders = [dict( | |
currentvalue={"prefix": "Level: "}, | |
pad={"t": 20}, | |
steps=steps | |
)] | |
# Add grid in a 'plus' shape | |
x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15)) | |
y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15)) | |
fig.add_shape(type="line", | |
x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1], | |
line=dict(color="#CFD8DC", width=2)) | |
fig.add_shape(type="line", | |
x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2, | |
line=dict(color="#9E9E9E", width=2)) | |
fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10) | |
fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10) | |
# Stylize layout | |
fig.update_layout( | |
sliders=sliders, | |
template="simple_white", | |
title={ | |
'text': f"{title}", | |
'x': 0.5, | |
'xanchor': 'center', | |
'yanchor': 'top', | |
'font': dict( | |
size=22, | |
color="Black") | |
}, | |
width=width, | |
height=height, | |
) | |
fig.update_xaxes(visible=False) | |
fig.update_yaxes(visible=False) | |
return fig | |