topic_modelling / funcs /anonymiser.py
seanpedrickcase's picture
Only aggregate topics not 'other', allowed for minimum sentence length, default max_topics now will auto aggregate topics. Added Cognito Auth functionality (boto3 with AWS).
1e2bb3e
raw
history blame
12.2 kB
from spacy.cli import download
import spacy
from spacy.pipeline import Sentencizer
from funcs.presidio_analyzer_custom import analyze_dict
spacy.prefer_gpu()
def spacy_model_installed(model_name):
try:
import en_core_web_sm
en_core_web_sm.load()
print("Successfully imported spaCy model")
nlp = spacy.load("en_core_web_sm")
#print(nlp._path)
except:
download(model_name)
nlp = spacy.load(model_name)
print("Successfully imported spaCy model")
#print(nlp._path)
return nlp
#if not is_model_installed(model_name):
# os.system(f"python -m spacy download {model_name}")
model_name = "en_core_web_sm"
nlp = spacy_model_installed(model_name)
import re
import secrets
import base64
import time
import pandas as pd
from faker import Faker
from presidio_analyzer import AnalyzerEngine, BatchAnalyzerEngine, PatternRecognizer
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
from typing import List
# Function to Split Text and Create DataFrame using SpaCy
def expand_sentences_spacy(df, colname, custom_delimiters:List[str]=[], nlp=nlp):
expanded_data = []
# if not custom_delimiters:
# custom_delimiters = []
df = df.drop('index', axis = 1, errors="ignore").reset_index(names='index')
# sentencizer = Sentencizer()
# new_punct_chars = sentencizer.default_punct_chars
# new_punct_chars.extend(custom_delimiters)
# config = {"punct_chars": new_punct_chars}
# nlp.add_pipe("sentencizer", config=config)
for index, row in df.iterrows():
doc = nlp(row[colname])
for sent in doc.sents:
expanded_data.append({'document_index': row['index'], colname: sent.text})
return pd.DataFrame(expanded_data)
# def expand_sentences_spacy(df, colname, custom_delimiters:List[str]=[], nlp=nlp):
# #print("Custom delimiters:", custom_delimiters)
# expanded_data = []
# df = df.drop('index', axis = 1, errors="ignore").reset_index(names='index')
# sentencizer = Sentencizer()
# new_punct_chars = sentencizer.default_punct_chars
# if custom_delimiters:
# new_punct_chars.extend(custom_delimiters)
# pattern = "(" + "|".join(re.escape(punct) for punct in new_punct_chars) + ")"
# #print("Patterns:", pattern)
# split_list = []
# for idx, string in enumerate(df[colname]):
# new_split = re.split(pattern, string)
# for n, sentence in enumerate(new_split):
# if sentence:
# # If there is a split delimiter in the 'sentence' after, add it to the previous sentence as it will be removed at a later step
# if n + 1 < len(new_split):
# if new_split[n + 1]:
# # If the next split is in the list of split characters, then add it to this current sentence
# if new_split[n + 1] in new_punct_chars:
# split_list.append({'document_index': idx, colname: sentence + new_split[n + 1]})
# else:
# split_list.append({'document_index': idx, colname: sentence})
# return pd.DataFrame(split_list)
def anon_consistent_names(df):
# ## Pick out common names and replace them with the same person value
df_dict = df.to_dict(orient="list")
analyzer = AnalyzerEngine()
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer)
analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en")
analyzer_results = list(analyzer_results)
# + tags=[]
text = analyzer_results[3].value
# + tags=[]
recognizer_result = str(analyzer_results[3].recognizer_results)
# + tags=[]
recognizer_result
# + tags=[]
data_str = recognizer_result # abbreviated for brevity
# Adjusting the parse_dict function to handle trailing ']'
# Splitting the main data string into individual list strings
list_strs = data_str[1:-1].split('], [')
def parse_dict(s):
s = s.strip('[]') # Removing any surrounding brackets
items = s.split(', ')
d = {}
for item in items:
key, value = item.split(': ')
if key == 'score':
d[key] = float(value)
elif key in ['start', 'end']:
d[key] = int(value)
else:
d[key] = value
return d
# Re-running the improved processing code
result = []
for lst_str in list_strs:
# Splitting each list string into individual dictionary strings
dict_strs = lst_str.split(', type: ')
dict_strs = [dict_strs[0]] + ['type: ' + s for s in dict_strs[1:]] # Prepending "type: " back to the split strings
# Parsing each dictionary string
dicts = [parse_dict(d) for d in dict_strs]
result.append(dicts)
#result
# + tags=[]
names = []
for idx, paragraph in enumerate(text):
paragraph_texts = []
for dictionary in result[idx]:
if dictionary['type'] == 'PERSON':
paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']])
names.append(paragraph_texts)
# + tags=[]
# Flatten the list of lists and extract unique names
unique_names = list(set(name for sublist in names for name in sublist))
# + tags=[]
fake_names = pd.Series(unique_names).apply(fake_first_name)
# + tags=[]
mapping_df = pd.DataFrame(data={"Unique names":unique_names,
"Fake names": fake_names})
# + tags=[]
# Convert mapping dataframe to dictionary
# Convert mapping dataframe to dictionary, adding word boundaries for full-word match
name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])}
# + tags=[]
name_map
# + tags=[]
scrubbed_df_consistent_names = df.replace(name_map, regex = True)
# + tags=[]
scrubbed_df_consistent_names
return scrubbed_df_consistent_names
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
if file_type == 'csv':
return pd.read_csv(filename, low_memory=False)
elif file_type == 'xlsx':
return pd.read_excel(filename)
elif file_type == 'parquet':
return pd.read_parquet(filename)
def anonymise_script(df, chosen_col, anon_strat):
#print(df.shape)
#df_chosen_col_mask = (df[chosen_col].isnull()) | (df[chosen_col].str.strip() == "")
#print("Length of input series blank at start is: ", df_chosen_col_mask.value_counts())
# DataFrame to dict
df_dict = pd.DataFrame(data={chosen_col:df[chosen_col].astype(str)}).to_dict(orient="list")
analyzer = AnalyzerEngine()
# Add titles to analyzer list
titles_recognizer = PatternRecognizer(supported_entity="TITLE",
deny_list=["Mr","Mrs","Miss", "Ms", "mr", "mrs", "miss", "ms"])
analyzer.registry.add_recognizer(titles_recognizer)
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer)
anonymizer = AnonymizerEngine()
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer)
print("Identifying personal data")
analyse_tic = time.perf_counter()
#analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en")
analyzer_results = analyze_dict(batch_analyzer, df_dict, language="en")
#print(analyzer_results)
analyzer_results = list(analyzer_results)
analyse_toc = time.perf_counter()
analyse_time_out = f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds."
print(analyse_time_out)
# Generate a 128-bit AES key. Then encode the key using base64 to get a string representation
key = secrets.token_bytes(16) # 128 bits = 16 bytes
key_string = base64.b64encode(key).decode('utf-8')
# Create faker function (note that it has to receive a value)
fake = Faker("en_UK")
def fake_first_name(x):
return fake.first_name()
# Set up the anonymization configuration WITHOUT DATE_TIME
replace_config = eval('{"DEFAULT": OperatorConfig("replace")}')
redact_config = eval('{"DEFAULT": OperatorConfig("redact")}')
hash_config = eval('{"DEFAULT": OperatorConfig("hash")}')
mask_config = eval('{"DEFAULT": OperatorConfig("mask", {"masking_char":"*", "chars_to_mask":100, "from_end":True})}')
people_encrypt_config = eval('{"PERSON": OperatorConfig("encrypt", {"key": key_string})}') # The encryption is using AES cypher in CBC mode and requires a cryptographic key as an input for both the encryption and the decryption.
fake_first_name_config = eval('{"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})}')
if anon_strat == "replace": chosen_mask_config = replace_config
if anon_strat == "redact": chosen_mask_config = redact_config
if anon_strat == "hash": chosen_mask_config = hash_config
if anon_strat == "mask": chosen_mask_config = mask_config
if anon_strat == "encrypt": chosen_mask_config = people_encrypt_config
elif anon_strat == "fake_first_name": chosen_mask_config = fake_first_name_config
# I think in general people will want to keep date / times - NOT FOR TOPIC MODELLING
#keep_date_config = eval('{"DATE_TIME": OperatorConfig("keep")}')
#combined_config = {**chosen_mask_config, **keep_date_config}
combined_config = {**chosen_mask_config}#, **keep_date_config}
combined_config
print("Anonymising personal data")
anonymizer_results = batch_anonymizer.anonymize_dict(analyzer_results, operators=combined_config)
#print(anonymizer_results)
scrubbed_df = pd.DataFrame(data={chosen_col:anonymizer_results[chosen_col]})
scrubbed_series = scrubbed_df[chosen_col]
#print(scrubbed_series[0:6])
#print("Length of output series is: ", len(scrubbed_series))
#print("Length of input series at end is: ", len(df[chosen_col]))
#scrubbed_values_mask = (scrubbed_series.isnull()) | (scrubbed_series.str.strip() == "")
#df_chosen_col_mask = (df[chosen_col].isnull()) | (df[chosen_col].str.strip() == "")
#print("Length of input series blank at end is: ", df_chosen_col_mask.value_counts())
#print("Length of output series blank is: ", scrubbed_values_mask.value_counts())
# Create reporting message
out_message = "Successfully anonymised"
if anon_strat == "encrypt":
out_message = out_message + ". Your decryption key is " + key_string + "."
return scrubbed_series, out_message
def do_anonymise(in_file, anon_strat, chosen_cols):
# Load file
anon_df = pd.DataFrame()
if in_file:
for match_file in in_file:
match_temp_file = pd.read_csv(match_file.name, delimiter = ",", low_memory=False)#, encoding='cp1252')
anon_df = pd.concat([anon_df, match_temp_file])
# Split dataframe to keep only selected columns
all_cols_original_order = list(anon_df.columns)
anon_df_part = anon_df[chosen_cols]
anon_df_remain = anon_df.drop(chosen_cols, axis = 1)
# Anonymise the selected columns
anon_df_part_out, out_message = anonymise_script(anon_df_part, anon_strat)
# Rejoin the dataframe together
anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis = 1)
anon_df_out = anon_df_out[all_cols_original_order]
# Export file
out_file_part = re.sub(r'\.csv', '', match_file.name)
anon_export_file_name = out_file_part + "_anon_" + anon_strat + ".csv"
anon_df_out.to_csv(anon_export_file_name, index = None)
return out_message, anon_export_file_name