Spaces:
Running
Running
Only aggregate topics not 'other', allowed for minimum sentence length, default max_topics now will auto aggregate topics. Added Cognito Auth functionality (boto3 with AWS).
1e2bb3e
import os | |
import zipfile | |
import re | |
import pandas as pd | |
import gradio as gr | |
import gzip | |
import pickle | |
import numpy as np | |
from bertopic import BERTopic | |
from datetime import datetime | |
from typing import List, Tuple | |
today = datetime.now().strftime("%d%m%Y") | |
today_rev = datetime.now().strftime("%Y%m%d") | |
def get_or_create_env_var(var_name:str, default_value:str) -> str: | |
# Get the environment variable if it exists | |
value = os.environ.get(var_name) | |
# If it doesn't exist, set it to the default value | |
if value is None: | |
os.environ[var_name] = default_value | |
value = default_value | |
return value | |
# Retrieving or setting output folder | |
env_var_name = 'GRADIO_OUTPUT_FOLDER' | |
default_value = 'output/' | |
output_folder = get_or_create_env_var(env_var_name, default_value) | |
print(f'The value of {env_var_name} is {output_folder}') | |
def ensure_output_folder_exists(): | |
"""Checks if the 'output/' folder exists, creates it if not.""" | |
folder_name = "output/" | |
if not os.path.exists(folder_name): | |
# Create the folder if it doesn't exist | |
os.makedirs(folder_name) | |
print(f"Created the 'output/' folder.") | |
else: | |
print(f"The 'output/' folder already exists.") | |
async def get_connection_params(request: gr.Request): | |
base_folder = "" | |
if request: | |
#print("request user:", request.username) | |
#request_data = await request.json() # Parse JSON body | |
#print("All request data:", request_data) | |
#context_value = request_data.get('context') | |
#if 'context' in request_data: | |
# print("Request context dictionary:", request_data['context']) | |
# print("Request headers dictionary:", request.headers) | |
# print("All host elements", request.client) | |
# print("IP address:", request.client.host) | |
# print("Query parameters:", dict(request.query_params)) | |
# To get the underlying FastAPI items you would need to use await and some fancy @ stuff for a live query: https://fastapi.tiangolo.com/vi/reference/request/ | |
#print("Request dictionary to object:", request.request.body()) | |
print("Session hash:", request.session_hash) | |
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER | |
CUSTOM_CLOUDFRONT_HEADER_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER', '') | |
#print(f'The value of CUSTOM_CLOUDFRONT_HEADER is {CUSTOM_CLOUDFRONT_HEADER_var}') | |
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER_VALUE | |
CUSTOM_CLOUDFRONT_HEADER_VALUE_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER_VALUE', '') | |
#print(f'The value of CUSTOM_CLOUDFRONT_HEADER_VALUE_var is {CUSTOM_CLOUDFRONT_HEADER_VALUE_var}') | |
if CUSTOM_CLOUDFRONT_HEADER_var and CUSTOM_CLOUDFRONT_HEADER_VALUE_var: | |
if CUSTOM_CLOUDFRONT_HEADER_var in request.headers: | |
supplied_cloudfront_custom_value = request.headers[CUSTOM_CLOUDFRONT_HEADER_var] | |
if supplied_cloudfront_custom_value == CUSTOM_CLOUDFRONT_HEADER_VALUE_var: | |
print("Custom Cloudfront header found:", supplied_cloudfront_custom_value) | |
else: | |
raise(ValueError, "Custom Cloudfront header value does not match expected value.") | |
# Get output save folder from 1 - username passed in from direct Cognito login, 2 - Cognito ID header passed through a Lambda authenticator, 3 - the session hash. | |
if request.username: | |
out_session_hash = request.username | |
base_folder = "user-files/" | |
elif 'x-cognito-id' in request.headers: | |
out_session_hash = request.headers['x-cognito-id'] | |
base_folder = "user-files/" | |
print("Cognito ID found:", out_session_hash) | |
else: | |
out_session_hash = request.session_hash | |
base_folder = "temp-files/" | |
# print("Cognito ID not found. Using session hash as save folder:", out_session_hash) | |
output_folder = base_folder + out_session_hash + "/" | |
#if bucket_name: | |
# print("S3 output folder is: " + "s3://" + bucket_name + "/" + output_folder) | |
return out_session_hash, output_folder | |
else: | |
print("No session parameters found.") | |
return "","" | |
def detect_file_type(filename): | |
"""Detect the file type based on its extension.""" | |
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')): | |
return 'csv' | |
elif filename.endswith('.xlsx'): | |
return 'xlsx' | |
elif filename.endswith('.parquet'): | |
return 'parquet' | |
elif filename.endswith('.pkl.gz'): | |
return 'pkl.gz' | |
elif filename.endswith('.pkl'): | |
return 'pkl' | |
elif filename.endswith('.npz'): | |
return 'npz' | |
else: | |
raise ValueError("Unsupported file type.") | |
def read_file(filename): | |
"""Read the file based on its detected type.""" | |
file_type = detect_file_type(filename) | |
print("Loading in file") | |
if file_type == 'csv': | |
file = pd.read_csv(filename, low_memory=False)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore") | |
elif file_type == 'xlsx': | |
file = pd.read_excel(filename)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore") | |
elif file_type == 'parquet': | |
file = pd.read_parquet(filename)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore") | |
elif file_type == 'pkl.gz': | |
with gzip.open(filename, 'rb') as file: | |
file = pickle.load(file) | |
#file = pd.read_pickle(filename) | |
elif file_type == 'pkl': | |
file = BERTopic.load(filename) | |
elif file_type == 'npz': | |
file = np.load(filename)['arr_0'] | |
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save | |
if "compress" in filename: | |
file /= 100 | |
print("File load complete") | |
return file | |
def initial_file_load(in_file): | |
''' | |
When file is loaded, update the column dropdown choices and write to relevant data states. | |
''' | |
new_choices = [] | |
concat_choices = [] | |
custom_labels = pd.DataFrame() | |
topic_model = None | |
embeddings = np.array([]) | |
file_list = [string.name for string in in_file] | |
data_file_names = [string for string in file_list if "npz" not in string.lower() and "pkl" not in string.lower() and "topic_list.csv" not in string.lower()] | |
if data_file_names: | |
data_file_name = data_file_names[0] | |
df = read_file(data_file_name) | |
data_file_name_no_ext = get_file_path_end(data_file_name) | |
new_choices = list(df.columns) | |
concat_choices.extend(new_choices) | |
output_text = "Data file loaded." | |
else: | |
error = "No data file provided." | |
print(error) | |
output_text = error | |
model_file_names = [string for string in file_list if "pkl" in string.lower()] | |
if model_file_names: | |
model_file_name = model_file_names[0] | |
topic_model = read_file(model_file_name) | |
output_text = "Bertopic model loaded." | |
embedding_file_names = [string for string in file_list if "npz" in string.lower()] | |
if embedding_file_names: | |
embedding_file_name = embedding_file_names[0] | |
embeddings = read_file(embedding_file_name) | |
output_text = "Embeddings loaded." | |
label_file_names = [string for string in file_list if "topic_list" in string.lower()] | |
if label_file_names: | |
label_file_name = label_file_names[0] | |
custom_labels = read_file(label_file_name) | |
output_text = "Labels loaded." | |
#The np.array([]) at the end is for clearing the embedding state when a new file is loaded | |
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), df, output_text, topic_model, embeddings, data_file_name_no_ext, custom_labels, df | |
def custom_regex_load(in_file): | |
''' | |
When file is loaded, update the column dropdown choices and write to relevant data states. | |
''' | |
custom_regex = pd.DataFrame() | |
file_list = [string.name for string in in_file] | |
regex_file_names = [string for string in file_list if "csv" in string.lower()] | |
if regex_file_names: | |
regex_file_name = regex_file_names[0] | |
custom_regex = pd.read_csv(regex_file_name, low_memory=False, header=None) | |
#regex_file_name_no_ext = get_file_path_end(regex_file_name) | |
output_text = "Data file loaded." | |
print(output_text) | |
else: | |
error = "No regex file provided." | |
print(error) | |
output_text = error | |
return error, custom_regex | |
return output_text, custom_regex | |
def get_file_path_end(file_path): | |
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt") | |
basename = os.path.basename(file_path) | |
# Then, split the basename and its extension and return only the basename without the extension | |
filename_without_extension, _ = os.path.splitext(basename) | |
#print(filename_without_extension) | |
return filename_without_extension | |
def get_file_path_end_with_ext(file_path): | |
match = re.search(r'(.*[\/\\])?(.+)$', file_path) | |
filename_end = match.group(2) if match else '' | |
return filename_end | |
# Zip the above to export file | |
def zip_folder(folder_path, output_zip_file): | |
# Create a ZipFile object in write mode | |
with zipfile.ZipFile(output_zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
# Walk through the directory | |
for root, dirs, files in os.walk(folder_path): | |
for file in files: | |
# Create a complete file path | |
file_path = os.path.join(root, file) | |
# Add file to the zip file | |
# The arcname argument sets the archive name, i.e., the name within the zip file | |
zipf.write(file_path, arcname=os.path.relpath(file_path, folder_path)) | |
def delete_files_in_folder(folder_path): | |
# Check if the folder exists | |
if not os.path.exists(folder_path): | |
print(f"The folder {folder_path} does not exist.") | |
return | |
# Iterate over all files in the folder and remove each | |
for filename in os.listdir(folder_path): | |
file_path = os.path.join(folder_path, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
else: | |
print(f"Skipping {file_path} as it is a directory") | |
except Exception as e: | |
print(f"Failed to delete {file_path}. Reason: {e}") | |
def save_topic_outputs(topic_model: BERTopic, data_file_name_no_ext: str, output_list: List[str], docs: List[str], save_topic_model: bool, prepared_docs: pd.DataFrame, split_sentence_drop: str, output_folder: str = output_folder, progress: gr.Progress = gr.Progress()) -> Tuple[List[str], str]: | |
""" | |
Save the outputs of a topic model to specified files. | |
Args: | |
topic_model (BERTopic): The topic model object. | |
data_file_name_no_ext (str): The base name of the data file without extension. | |
output_list (List[str]): List to store the output file names. | |
docs (List[str]): List of documents. | |
save_topic_model (bool): Flag to save the topic model. | |
prepared_docs (pd.DataFrame): DataFrame containing prepared documents. | |
split_sentence_drop (str): Option to split sentences ("Yes" or "No"). | |
output_folder (str, optional): Folder to save the output files. Defaults to output_folder. | |
progress (gr.Progress, optional): Progress tracker. Defaults to gr.Progress(). | |
Returns: | |
Tuple[List[str], str]: A tuple containing the list of output file names and a status message. | |
""" | |
progress(0.7, desc= "Checking data") | |
topic_dets = topic_model.get_topic_info() | |
if topic_dets.shape[0] == 1: | |
topic_det_output_name = output_folder + "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv" | |
topic_dets.to_csv(topic_det_output_name) | |
output_list.append(topic_det_output_name) | |
return output_list, "No topics found, original file returned" | |
progress(0.8, desc= "Saving output") | |
topic_det_output_name = output_folder + "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv" | |
topic_dets.to_csv(topic_det_output_name) | |
output_list.append(topic_det_output_name) | |
doc_det_output_name = output_folder + "doc_details_" + data_file_name_no_ext + "_" + today_rev + ".csv" | |
## Check that the following columns exist in the dataframe, keep only the ones that exist | |
columns_to_check = ["Document", "Topic", "Name", "Probability", "Representative_document"] | |
columns_found = [column for column in columns_to_check if column in topic_model.get_document_info(docs).columns] | |
doc_dets = topic_model.get_document_info(docs)[columns_found] | |
### If there are full topic probabilities, join these on to the document details df | |
def is_valid_dataframe(df): | |
""" | |
Checks if the given object is a non-empty pandas DataFrame. | |
Args: | |
df: The object to check. | |
Returns: | |
True if df is a non-empty DataFrame, False otherwise. | |
""" | |
if df is None: # Check for None first | |
return False | |
return isinstance(df, pd.DataFrame) and not df.empty | |
if is_valid_dataframe(topic_model.probabilities_): | |
doc_dets = doc_dets.merge(topic_model.probabilities_, left_index=True, right_index=True, how="left") | |
# If you have created a 'sentence split' dataset from the cleaning options, map these sentences back to the original document. | |
try: | |
if split_sentence_drop == "Yes": | |
doc_dets = doc_dets.merge(prepared_docs[['document_index']], how = "left", left_index=True, right_index=True) | |
doc_dets = doc_dets.rename(columns={"document_index": "parent_document_index"}, errors='ignore') | |
# 1. Group by Parent Document Index: | |
grouped = doc_dets.groupby('parent_document_index') | |
# 2. Aggregate Topics and Probabilities: | |
# def aggregate_topics(group): | |
# original_text = ' '.join(group['Document']) | |
# topics = group['Topic'].tolist() | |
# if 'Name' in group.columns: | |
# topic_names = group['Name'].tolist() | |
# else: | |
# topic_names = None | |
# if 'Probability' in group.columns: | |
# probabilities = group['Probability'].tolist() | |
# else: | |
# probabilities = None # Or any other default value you prefer | |
# return pd.Series({'Document':original_text, 'Topic numbers': topics, 'Topic names': topic_names, 'Probabilities': probabilities}) | |
def aggregate_topics(group): | |
original_text = ' '.join(group['Document']) | |
# Filter out topics starting with '-1' | |
topics = [topic for topic in group['Topic'].tolist() if not str(topic).startswith('-1')] | |
if 'Name' in group.columns: | |
# Filter out topic names corresponding to excluded topics | |
topic_names = [name for topic, name in zip(group['Topic'], group['Name'].tolist()) if not str(topic).startswith('-1')] | |
else: | |
topic_names = None | |
if 'Probability' in group.columns: | |
# Filter out probabilities corresponding to excluded topics | |
probabilities = [prob for topic, prob in zip(group['Topic'], group['Probability'].tolist()) if not str(topic).startswith('-1')] | |
else: | |
probabilities = None | |
return pd.Series({'Document': original_text, 'Topic numbers': topics, 'Topic names': topic_names, 'Probabilities': probabilities}) | |
#result_df = grouped.apply(aggregate_topics).reset_index() | |
doc_det_agg = grouped.apply(lambda x: aggregate_topics(x)).reset_index() | |
# Join back original text | |
#doc_det_agg = doc_det_agg.merge(original_data[[in_colnames_list_first]], how = "left", left_index=True, right_index=True) | |
doc_det_agg_output_name = output_folder + "doc_details_agg_" + data_file_name_no_ext + "_" + today_rev + ".csv" | |
doc_det_agg.to_csv(doc_det_agg_output_name) | |
output_list.append(doc_det_agg_output_name) | |
except Exception as e: | |
print("Creating aggregate document details failed, error:", e) | |
# Save document details to file | |
doc_dets.to_csv(doc_det_output_name) | |
output_list.append(doc_det_output_name) | |
if "CustomName" in topic_dets.columns: | |
topics_text_out_str = str(topic_dets["CustomName"]) | |
else: | |
topics_text_out_str = str(topic_dets["Name"]) | |
output_text = "Topics: " + topics_text_out_str | |
# Save topic model to file | |
if save_topic_model == "Yes": | |
print("Saving BERTopic model in .pkl format.") | |
#folder_path = output_folder #"output_model/" | |
#if not os.path.exists(folder_path): | |
# Create the folder | |
# os.makedirs(folder_path) | |
topic_model_save_name_pkl = output_folder + data_file_name_no_ext + "_topics_" + today_rev + ".pkl"# + ".safetensors" | |
topic_model_save_name_zip = topic_model_save_name_pkl + ".zip" | |
# Clear folder before replacing files | |
#delete_files_in_folder(topic_model_save_name_pkl) | |
topic_model.save(topic_model_save_name_pkl, serialization='pickle', save_embedding_model=False, save_ctfidf=False) | |
# Zip file example | |
#zip_folder(topic_model_save_name_pkl, topic_model_save_name_zip) | |
output_list.append(topic_model_save_name_pkl) | |
return output_list, output_text | |