Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,154 +15,8 @@ def get_popular_tickers():
|
|
15 |
"JNJ", "V", "PG", "WMT", "BAC", "DIS", "NFLX", "INTC"
|
16 |
]
|
17 |
|
18 |
-
|
19 |
-
try:
|
20 |
-
# Asegurar que los par谩metros sean enteros
|
21 |
-
train_data_points = int(train_data_points)
|
22 |
-
prediction_days = int(prediction_days)
|
23 |
-
|
24 |
-
# Configurar el pipeline
|
25 |
-
pipeline = ChronosPipeline.from_pretrained(
|
26 |
-
"amazon/chronos-t5-mini",
|
27 |
-
device_map="cpu",
|
28 |
-
torch_dtype=torch.float32
|
29 |
-
)
|
30 |
-
|
31 |
-
# Obtener la cantidad m谩xima de datos disponibles
|
32 |
-
stock = yf.Ticker(ticker)
|
33 |
-
hist = stock.history(period="max")
|
34 |
-
stock_prices = hist[['Close']].reset_index()
|
35 |
-
df = stock_prices.rename(columns={'Date': 'Date', 'Close': f'{ticker}_Close'})
|
36 |
-
|
37 |
-
total_points = len(df)
|
38 |
-
|
39 |
-
# Asegurar que el n煤mero de datos de entrenamiento no exceda el total disponible
|
40 |
-
train_data_points = min(train_data_points, total_points)
|
41 |
-
|
42 |
-
# Crear el contexto para entrenamiento
|
43 |
-
context = torch.tensor(df[f'{ticker}_Close'][:train_data_points].values, dtype=torch.float32)
|
44 |
-
|
45 |
-
# Realizar predicci贸n
|
46 |
-
forecast = pipeline.predict(context, prediction_days, limit_prediction_length=False)
|
47 |
-
low, median, high = np.quantile(forecast[0].numpy(), [0.01, 0.5, 0.99], axis=0)
|
48 |
-
|
49 |
-
plt.figure(figsize=(20, 10))
|
50 |
-
plt.clf()
|
51 |
-
|
52 |
-
# Determinar el rango de fechas para mostrar en el gr谩fico
|
53 |
-
context_days = min(10, train_data_points)
|
54 |
-
start_index = max(0, train_data_points - context_days)
|
55 |
-
end_index = min(train_data_points + prediction_days, total_points)
|
56 |
-
|
57 |
-
# Plotear datos hist贸ricos incluyendo datos reales despu茅s del entrenamiento
|
58 |
-
historical_dates = df['Date'][start_index:end_index]
|
59 |
-
historical_data = df[f'{ticker}_Close'][start_index:end_index].values
|
60 |
-
plt.plot(historical_dates,
|
61 |
-
historical_data,
|
62 |
-
color='blue',
|
63 |
-
linewidth=2,
|
64 |
-
label='Datos Reales')
|
65 |
-
|
66 |
-
# Crear fechas para la predicci贸n considerando solo d铆as h谩biles
|
67 |
-
if train_data_points < total_points:
|
68 |
-
# Si hay m谩s datos despu茅s del entrenamiento
|
69 |
-
prediction_start_date = df['Date'].iloc[train_data_points]
|
70 |
-
else:
|
71 |
-
# Si estamos en el 煤ltimo punto, generar fechas futuras
|
72 |
-
last_date = df['Date'].iloc[-1]
|
73 |
-
prediction_start_date = last_date + pd.Timedelta(days=1)
|
74 |
-
|
75 |
-
# Generar fechas de predicci贸n solo en d铆as h谩biles
|
76 |
-
prediction_dates = pd.date_range(start=prediction_start_date, periods=prediction_days, freq='B')
|
77 |
-
|
78 |
-
# Plotear predicci贸n
|
79 |
-
plt.plot(prediction_dates,
|
80 |
-
median,
|
81 |
-
color='black',
|
82 |
-
linewidth=2,
|
83 |
-
linestyle='-',
|
84 |
-
label='Predicci贸n')
|
85 |
-
|
86 |
-
# 脕rea de confianza
|
87 |
-
plt.fill_between(prediction_dates, low, high,
|
88 |
-
color='gray', alpha=0.2,
|
89 |
-
label='Intervalo de Confianza')
|
90 |
-
|
91 |
-
# Calcular m茅tricas si hay datos reales para comparar
|
92 |
-
overlap_end_index = train_data_points + prediction_days
|
93 |
-
if overlap_end_index <= total_points:
|
94 |
-
real_future_dates = df['Date'][train_data_points:overlap_end_index]
|
95 |
-
real_future_data = df[f'{ticker}_Close'][train_data_points:overlap_end_index].values
|
96 |
-
|
97 |
-
# Asegurar que las fechas de predicci贸n y las reales coincidan
|
98 |
-
matching_dates = real_future_dates[real_future_dates.isin(prediction_dates)]
|
99 |
-
matching_indices = matching_dates.index - train_data_points
|
100 |
-
plt.plot(matching_dates,
|
101 |
-
real_future_data[matching_indices],
|
102 |
-
color='red',
|
103 |
-
linewidth=2,
|
104 |
-
linestyle='--',
|
105 |
-
label='Datos Reales de Validaci贸n')
|
106 |
-
|
107 |
-
# Filtrar las predicciones que coinciden con las fechas reales
|
108 |
-
predicted_data = median[:len(matching_indices)]
|
109 |
-
mae = mean_absolute_error(real_future_data[matching_indices], predicted_data)
|
110 |
-
rmse = np.sqrt(mean_squared_error(real_future_data[matching_indices], predicted_data))
|
111 |
-
mape = np.mean(np.abs((real_future_data[matching_indices] - predicted_data) / real_future_data[matching_indices])) * 100
|
112 |
-
plt.title(f"Predicci贸n del Precio de {ticker}\nMAE: {mae:.2f} | RMSE: {rmse:.2f} | MAPE: {mape:.2f}%",
|
113 |
-
fontsize=14, pad=20)
|
114 |
-
else:
|
115 |
-
plt.title(f"Predicci贸n Futura del Precio de {ticker}",
|
116 |
-
fontsize=14, pad=20)
|
117 |
-
|
118 |
-
plt.legend(loc="upper left", fontsize=12)
|
119 |
-
plt.xlabel("Fecha", fontsize=12)
|
120 |
-
plt.ylabel("Precio", fontsize=12)
|
121 |
-
|
122 |
-
# Habilitar l铆neas de referencia diarias en el gr谩fico
|
123 |
-
plt.grid(True, which='both', axis='x', linestyle='--', linewidth=0.5)
|
124 |
-
|
125 |
-
# Formatear el eje x para mostrar las fechas correctamente y agregar l铆neas de referencia diarias
|
126 |
-
ax = plt.gca()
|
127 |
-
locator = mdates.DayLocator()
|
128 |
-
formatter = mdates.DateFormatter('%Y-%m-%d')
|
129 |
-
ax.xaxis.set_major_locator(locator)
|
130 |
-
ax.xaxis.set_major_formatter(formatter)
|
131 |
-
|
132 |
-
# Rotar las etiquetas de fecha
|
133 |
-
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
|
134 |
-
|
135 |
-
plt.tight_layout()
|
136 |
-
|
137 |
-
# Crear un archivo temporal para el CSV
|
138 |
-
temp_csv = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
|
139 |
-
prediction_df = pd.DataFrame({
|
140 |
-
'Date': prediction_dates,
|
141 |
-
'Predicted_Price': median,
|
142 |
-
'Lower_Bound': low,
|
143 |
-
'Upper_Bound': high
|
144 |
-
})
|
145 |
-
|
146 |
-
# Agregar datos reales si est谩n disponibles y coinciden con las fechas de predicci贸n
|
147 |
-
if overlap_end_index <= total_points:
|
148 |
-
real_future_dates = df['Date'][train_data_points:overlap_end_index]
|
149 |
-
real_future_data = df[f'{ticker}_Close'][train_data_points:overlap_end_index].values
|
150 |
-
matching_dates = real_future_dates[real_future_dates.isin(prediction_dates)]
|
151 |
-
prediction_df = prediction_df[prediction_df['Date'].isin(matching_dates)]
|
152 |
-
prediction_df['Real_Price'] = real_future_data[:len(prediction_df)]
|
153 |
-
|
154 |
-
# Guardar el DataFrame en el archivo temporal
|
155 |
-
prediction_df.to_csv(temp_csv.name, index=False)
|
156 |
-
temp_csv.close()
|
157 |
-
|
158 |
-
# Retornar el gr谩fico y la ruta del archivo CSV
|
159 |
-
return plt, temp_csv.name
|
160 |
-
|
161 |
-
except Exception as e:
|
162 |
-
print(f"Error: {str(e)}")
|
163 |
-
raise gr.Error(f"Error al procesar {ticker}: {str(e)}")
|
164 |
|
165 |
-
# Crear la interfaz de Gradio
|
166 |
with gr.Blocks() as demo:
|
167 |
gr.Markdown("# Aplicaci贸n de Predicci贸n de Precios de Acciones")
|
168 |
|
@@ -170,6 +24,7 @@ with gr.Blocks() as demo:
|
|
170 |
with gr.Column(scale=1):
|
171 |
ticker = gr.Dropdown(
|
172 |
choices=get_popular_tickers(),
|
|
|
173 |
label="Selecciona el S铆mbolo de la Acci贸n"
|
174 |
)
|
175 |
train_data_points = gr.Slider(
|
@@ -193,12 +48,18 @@ with gr.Blocks() as demo:
|
|
193 |
download_btn = gr.File(label="Descargar Predicciones")
|
194 |
|
195 |
def update_train_data_points(ticker):
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
ticker.change(
|
204 |
fn=update_train_data_points,
|
@@ -212,4 +73,4 @@ with gr.Blocks() as demo:
|
|
212 |
outputs=[plot_output, download_btn]
|
213 |
)
|
214 |
|
215 |
-
demo.launch()
|
|
|
15 |
"JNJ", "V", "PG", "WMT", "BAC", "DIS", "NFLX", "INTC"
|
16 |
]
|
17 |
|
18 |
+
# Resto del c贸digo se mantiene igual hasta la secci贸n de la interfaz Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
with gr.Blocks() as demo:
|
21 |
gr.Markdown("# Aplicaci贸n de Predicci贸n de Precios de Acciones")
|
22 |
|
|
|
24 |
with gr.Column(scale=1):
|
25 |
ticker = gr.Dropdown(
|
26 |
choices=get_popular_tickers(),
|
27 |
+
value="AAPL", # A帽adido valor por defecto
|
28 |
label="Selecciona el S铆mbolo de la Acci贸n"
|
29 |
)
|
30 |
train_data_points = gr.Slider(
|
|
|
48 |
download_btn = gr.File(label="Descargar Predicciones")
|
49 |
|
50 |
def update_train_data_points(ticker):
|
51 |
+
try:
|
52 |
+
stock = yf.Ticker(ticker)
|
53 |
+
hist = stock.history(period="max")
|
54 |
+
total_points = len(hist)
|
55 |
+
return gr.Slider.update(
|
56 |
+
maximum=total_points,
|
57 |
+
value=min(1000, total_points),
|
58 |
+
visible=True
|
59 |
+
)
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error updating slider: {str(e)}")
|
62 |
+
return gr.Slider.update(visible=True) # Mantener slider visible en caso de error
|
63 |
|
64 |
ticker.change(
|
65 |
fn=update_train_data_points,
|
|
|
73 |
outputs=[plot_output, download_btn]
|
74 |
)
|
75 |
|
76 |
+
demo.launch()
|