File size: 13,774 Bytes
1730c92
eee722e
 
1730c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee722e
 
 
 
 
 
 
 
 
 
1730c92
aeed07a
1730c92
 
eee722e
 
 
 
1730c92
 
 
eee722e
 
1730c92
eee722e
1730c92
 
eee722e
 
1730c92
 
eee722e
814326d
 
 
1730c92
 
 
 
 
 
eee722e
1730c92
 
 
 
 
 
 
 
 
 
eee722e
 
 
 
1730c92
 
eee722e
1730c92
eee722e
 
 
 
 
 
 
1730c92
eee722e
 
 
1730c92
eee722e
 
1730c92
eee722e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1730c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee722e
 
 
 
 
 
1730c92
 
 
 
 
eee722e
1730c92
 
 
 
 
 
 
eee722e
 
1730c92
eee722e
 
 
 
 
1730c92
eee722e
1730c92
eee722e
1730c92
eee722e
1730c92
 
eee722e
 
1730c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee722e
1730c92
 
 
 
 
 
 
 
eee722e
1730c92
 
 
 
 
 
 
 
eee722e
1730c92
eee722e
1730c92
 
 
 
 
 
 
 
 
eee722e
1730c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee722e
 
 
 
 
1730c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from typing import List, Optional

import gradio as gr
from langchain_core.vectorstores import VectorStore

from config import (
    LLM_MODEL_REPOS,
    EMBED_MODEL_REPOS,
    SUBTITLES_LANGUAGES,
    GENERATE_KWARGS,
)

from utils import (
    load_llm_model,
    load_embed_model,
    load_documents_and_create_db,
    user_message_to_chatbot,
    update_user_message_with_context,
    get_llm_response,
    get_gguf_model_names,
    add_new_model_repo,
    clear_llm_folder,
    clear_embed_folder,
    get_memory_usage,
)


# ============ INTERFACE COMPONENT INITIALIZATION FUNCS ============

def get_rag_settings(rag_mode: bool, render: bool = True):
    k = gr.Radio(
        choices=[1, 2, 3, 4, 5, 'all'],
        value=2,
        label='Number of relevant documents for search',
        visible=rag_mode,
        render=render,
        )
    score_threshold = gr.Slider(
        minimum=0,
        maximum=1,
        value=0.5,
        step=0.05,
        label='relevance_scores_threshold',
        visible=rag_mode,
        render=render,
        )
    return k, score_threshold


def get_user_message_with_context(text: str, rag_mode: bool) -> gr.component:
    num_lines = len(text.split('\n'))
    max_lines = 10
    num_lines = max_lines if num_lines > max_lines else num_lines
    return gr.Textbox(
        text,
        visible=rag_mode,
        interactive=False,
        label='User Message With Context',
        lines=num_lines,
        )


def get_system_prompt_component(interactive: bool) -> gr.Textbox:
    value = '' if interactive else 'System prompt is not supported by this model'
    return gr.Textbox(value=value, label='System prompt', interactive=interactive)


def get_generate_args(do_sample: bool) -> List[gr.component]:
    generate_args = [
        gr.Slider(minimum=0.1, maximum=3, value=GENERATE_KWARGS['temperature'], step=0.1, label='temperature', visible=do_sample),
        gr.Slider(minimum=0, maximum=1, value=GENERATE_KWARGS['top_p'], step=0.01, label='top_p', visible=do_sample),
        gr.Slider(minimum=1, maximum=50, value=GENERATE_KWARGS['top_k'], step=1, label='top_k', visible=do_sample),
        gr.Slider(minimum=1, maximum=5, value=GENERATE_KWARGS['repeat_penalty'], step=0.1, label='repeat_penalty', visible=do_sample),
    ]
    return generate_args


def get_rag_mode_component(db: Optional[VectorStore]) -> gr.Checkbox:
    value = visible = db is not None
    return gr.Checkbox(value=value, label='RAG Mode', scale=1, visible=visible)


# ================ LOADING AND INITIALIZING MODELS ========================

start_llm_model, start_support_system_role, load_log = load_llm_model(LLM_MODEL_REPOS[0], 'gemma-2-2b-it-Q8_0.gguf')
start_embed_model, load_log = load_embed_model(EMBED_MODEL_REPOS[0])



# ================== APPLICATION WEB INTERFACE ============================

css = '''.gradio-container {width: 60% !important}'''

with gr.Blocks(css=css) as interface:

    # ==================== GRADIO STATES ===============================

    documents = gr.State([])
    db = gr.State(None)
    user_message_with_context = gr.State('')
    support_system_role = gr.State(start_support_system_role)
    llm_model_repos = gr.State(LLM_MODEL_REPOS)
    embed_model_repos = gr.State(EMBED_MODEL_REPOS)
    llm_model = gr.State(start_llm_model)
    embed_model = gr.State(start_embed_model)



    # ==================== BOT PAGE =================================

    with gr.Tab(label='Chatbot'):
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    type='messages',  # new in gradio 5+
                    show_copy_button=True,
                    bubble_full_width=False,
                    height=480,
                )
                user_message = gr.Textbox(label='User')

                with gr.Row():
                    user_message_btn = gr.Button('Send')
                    stop_btn = gr.Button('Stop')
                    clear_btn = gr.Button('Clear')

            # ------------- GENERATION PARAMETERS -------------------

            with gr.Column(scale=1, min_width=80):
                with gr.Group():
                    gr.Markdown('History size')
                    history_len = gr.Slider(
                        minimum=0,
                        maximum=5,
                        value=0,
                        step=1,
                        info='Number of previous messages taken into account in history',
                        label='history_len',
                        show_label=False,
                        )

                    with gr.Group():
                        gr.Markdown('Generation parameters')
                        do_sample = gr.Checkbox(
                            value=False,
                            label='do_sample',
                            info='Activate random sampling',
                            )
                        generate_args = get_generate_args(do_sample.value)
                        do_sample.change(
                            fn=get_generate_args,
                            inputs=do_sample,
                            outputs=generate_args,
                            show_progress=False,
                            )

        rag_mode = get_rag_mode_component(db=db.value)
        k, score_threshold = get_rag_settings(rag_mode=rag_mode.value, render=False)
        rag_mode.change(
            fn=get_rag_settings,
            inputs=[rag_mode],
            outputs=[k, score_threshold],
            )
        with gr.Row():
            k.render()
            score_threshold.render()

        # ---------------- SYSTEM PROMPT AND USER MESSAGE -----------

        with gr.Accordion('Prompt', open=True):
            system_prompt = get_system_prompt_component(interactive=support_system_role.value)
            user_message_with_context = get_user_message_with_context(text='', rag_mode=rag_mode.value)

        # ---------------- SEND, CLEAR AND STOP BUTTONS ------------

        generate_event = gr.on(
            triggers=[user_message.submit, user_message_btn.click],
            fn=user_message_to_chatbot,
            inputs=[user_message, chatbot],
            outputs=[user_message, chatbot],
            queue=False,
        ).then(
            fn=update_user_message_with_context,
            inputs=[chatbot, rag_mode, db, k, score_threshold],
            outputs=[user_message_with_context],
        ).then(
            fn=get_user_message_with_context,
            inputs=[user_message_with_context, rag_mode],
            outputs=[user_message_with_context],
        ).then(
            fn=get_llm_response,
            inputs=[chatbot, llm_model, user_message_with_context, rag_mode, system_prompt,
                    support_system_role, history_len, do_sample, *generate_args],
            outputs=[chatbot],
        )

        stop_btn.click(
            fn=None,
            inputs=None,
            outputs=None,
            cancels=generate_event,
            queue=False,
        )

        clear_btn.click(
            fn=lambda: (None, ''),
            inputs=None,
            outputs=[chatbot, user_message_with_context],
            queue=False,
            )



    # ================= FILE DOWNLOAD PAGE =========================

    with gr.Tab(label='Load documents'):
        with gr.Row(variant='compact'):
            upload_files = gr.File(file_count='multiple', label='Loading text files')
            web_links = gr.Textbox(lines=6, label='Links to Web sites or YouTube')

        with gr.Row(variant='compact'):
            chunk_size = gr.Slider(50, 2000, value=500, step=50, label='Chunk size')
            chunk_overlap = gr.Slider(0, 200, value=20, step=10, label='Chunk overlap')

            subtitles_lang = gr.Radio(
                SUBTITLES_LANGUAGES,
                value=SUBTITLES_LANGUAGES[0],
                label='YouTube subtitle language',
                )

        load_documents_btn = gr.Button(value='Upload documents and initialize database')
        load_docs_log = gr.Textbox(label='Status of loading and splitting documents', interactive=False)

        load_documents_btn.click(
            fn=load_documents_and_create_db,
            inputs=[upload_files, web_links, subtitles_lang, chunk_size, chunk_overlap, embed_model],
            outputs=[documents, db, load_docs_log],
        ).success(
            fn=get_rag_mode_component,
            inputs=[db],
            outputs=[rag_mode],
        )

        gr.HTML("""<h3 style='text-align: center'>
        <a href="https://github.com/sergey21000/chatbot-rag" target='_blank'>GitHub Repository</a></h3>
        """)



    # ================= VIEW PAGE FOR ALL DOCUMENTS =================

    with gr.Tab(label='View documents'):
        view_documents_btn = gr.Button(value='Show downloaded text chunks')
        view_documents_textbox = gr.Textbox(
            lines=1,
            placeholder='To view chunks, load documents in the Load documents tab',
            label='Uploaded chunks',
            )
        sep = '=' * 20
        view_documents_btn.click(
            lambda documents: f'\n{sep}\n\n'.join([doc.page_content for doc in documents]),
            inputs=[documents],
            outputs=[view_documents_textbox],
        )


    # ============== GGUF MODELS DOWNLOAD PAGE =====================

    with gr.Tab('Load LLM model'):
        new_llm_model_repo = gr.Textbox(
            value='',
            label='Add repository',
            placeholder='Link to repository of HF models in GGUF format',
            )
        new_llm_model_repo_btn = gr.Button('Add repository')
        curr_llm_model_repo = gr.Dropdown(
            choices=LLM_MODEL_REPOS,
            value=None,
            label='HF Model Repository',
            )
        curr_llm_model_path = gr.Dropdown(
            choices=[],
            value=None,
            label='GGUF model file',
            )
        load_llm_model_btn = gr.Button('Loading and initializing model')
        load_llm_model_log = gr.Textbox(
            value=f'Model {LLM_MODEL_REPOS[0]} loaded at application startup',
            label='Model loading status',
            lines=6,
            )

        with gr.Group():
            gr.Markdown('Free up disk space by deleting all models except the currently selected one')
            clear_llm_folder_btn = gr.Button('Clear folder')

        new_llm_model_repo_btn.click(
            fn=add_new_model_repo,
            inputs=[new_llm_model_repo, llm_model_repos],
            outputs=[curr_llm_model_repo, load_llm_model_log],
        ).success(
            fn=lambda: '',
            inputs=None,
            outputs=[new_llm_model_repo],
        )

        curr_llm_model_repo.change(
            fn=get_gguf_model_names,
            inputs=[curr_llm_model_repo],
            outputs=[curr_llm_model_path],
        )

        load_llm_model_btn.click(
            fn=load_llm_model,
            inputs=[curr_llm_model_repo, curr_llm_model_path],
            outputs=[llm_model, support_system_role, load_llm_model_log],
        ).success(
            fn=lambda log: log + get_memory_usage(),
            inputs=[load_llm_model_log],
            outputs=[load_llm_model_log],
        ).then(
            fn=get_system_prompt_component,
            inputs=[support_system_role],
            outputs=[system_prompt],
        )

        clear_llm_folder_btn.click(
            fn=clear_llm_folder,
            inputs=[curr_llm_model_path],
            outputs=None,
        ).success(
            fn=lambda model_path: f'Models other than {model_path} removed',
            inputs=[curr_llm_model_path],
            outputs=None,
        )


    # ============== EMBEDDING MODELS DOWNLOAD PAGE =============

    with gr.Tab('Load embed model'):
        new_embed_model_repo = gr.Textbox(
            value='',
            label='Add repository',
            placeholder='Link to HF model repository',
            )
        new_embed_model_repo_btn = gr.Button('Add repository')
        curr_embed_model_repo = gr.Dropdown(
            choices=EMBED_MODEL_REPOS,
            value=None,
            label='HF model repository',
            )

        load_embed_model_btn = gr.Button('Loading and initializing model')
        load_embed_model_log = gr.Textbox(
            value=f'Model {EMBED_MODEL_REPOS[0]} loaded at application startup',
            label='Model loading status',
            lines=7,
            )
        with gr.Group():
            gr.Markdown('Free up disk space by deleting all models except the currently selected one')
            clear_embed_folder_btn = gr.Button('Clear folder')

        new_embed_model_repo_btn.click(
            fn=add_new_model_repo,
            inputs=[new_embed_model_repo, embed_model_repos],
            outputs=[curr_embed_model_repo, load_embed_model_log],
        ).success(
            fn=lambda: '',
            inputs=None,
            outputs=new_embed_model_repo,
        )

        load_embed_model_btn.click(
            fn=load_embed_model,
            inputs=[curr_embed_model_repo],
            outputs=[embed_model, load_embed_model_log],
        ).success(
            fn=lambda log: log + get_memory_usage(),
            inputs=[load_embed_model_log],
            outputs=[load_embed_model_log],
        )

        clear_embed_folder_btn.click(
            fn=clear_embed_folder,
            inputs=[curr_embed_model_repo],
            outputs=None,
        ).success(
            fn=lambda model_repo: f'Models other than {model_repo} removed',
            inputs=[curr_embed_model_repo],
            outputs=None,
        )


interface.launch(server_name='0.0.0.0', server_port=7860)  # debug=True