File size: 22,099 Bytes
cc80256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae84e39
94309c7
 
cc80256
94309c7
cc80256
 
94309c7
cc80256
94309c7
cc80256
 
94309c7
cc80256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f9b886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc80256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65c1d49
 
 
 
 
 
 
 
 
 
 
 
cc80256
 
 
65c1d49
 
 
 
 
cc80256
65c1d49
 
 
 
cc80256
 
65c1d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc80256
 
 
 
 
 
 
 
 
 
65c1d49
 
 
 
 
 
 
 
cc80256
65c1d49
cc80256
 
 
 
 
 
 
 
 
 
 
65c1d49
cc80256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65c1d49
cc80256
 
 
65c1d49
cc80256
 
 
 
65c1d49
cc80256
 
 
 
 
65c1d49
 
cc80256
 
 
 
 
 
 
 
 
 
65c1d49
cc80256
 
 
 
 
 
 
65c1d49
cc80256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# Import necessary libraries
import math                 # For mathematical operations
import numpy as np          # For numerical operations
import pandas as pd         # For data manipulation and analysis
import seaborn as sns       # For data visualization
sns.set_style('whitegrid')  # Set seaborn style to whitegrid
import matplotlib.pyplot as plt  # For plotting graphs
plt.style.use("fivethirtyeight")  # Use 'fivethirtyeight' style for matplotlib plots

# Importing Keras libraries for building neural network models
import keras
from keras.models import Sequential  # For sequential model building
from keras.callbacks import EarlyStopping  # For early stopping during model training
from keras.layers import Dense, LSTM, Dropout  # For adding layers to neural network model

# Importing Scikit-learn libraries for data preprocessing and model evaluation
from sklearn.preprocessing import MinMaxScaler  # For data normalization
from sklearn.model_selection import train_test_split  # For splitting data into training and testing sets
from sklearn.metrics import mean_squared_error, mean_absolute_error,r2_score  # For model evaluation

import warnings   # For handling warnings
warnings.simplefilter('ignore')   # Ignore warnings for cleaner output
import os
import kagglehub
# Importing MinMaxScaler from sklearn.preprocessing module
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from huggingface_hub import hf_hub_download
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
from statsmodels.tsa.arima.model import ARIMA
from sklearn.ensemble import RandomForestRegressor
import xgboost as xgb
import os
import kagglehub
from datetime import timedelta
# # Download latest version
# path = kagglehub.dataset_download("mczielinski/bitcoin-historical-data")

# print("Path to dataset files:", path)


# # Path to the dataset folder (already defined as 'path')
csv_file = "btcusd_1-min_data.csv"
# full_path = os.path.join(path, csv_file)

# Load the dataset using pandas
df = pd.read_csv("btcusd_1-min_data.csv")
df['Date'] = pd.to_datetime(df['Timestamp'], unit='s').dt.date

# Grouping the DataFrame by date and calculating the mean of 'Open', 'Close', 'High', 'Low', and 'Volume' columns
df_day = df.groupby('Date')[['Open', 'Close', 'High', 'Low', 'Volume']].mean()

# Converting the grouped DataFrame to a new DataFrame
df_day = pd.DataFrame(df_day)
df_close = df.groupby('Date')['Close'].mean()

# Creating a DataFrame from the calculated mean closing prices
df_close = pd.DataFrame(df_close)

# Creating a MinMaxScaler object with feature range scaled between 0 and 1
scaler = MinMaxScaler(feature_range=(0, 1))

# Reshaping the closing price values into a 2D array and scaling the data
scaled_data = scaler.fit_transform(np.array(df_close.values).reshape(-1, 1))

train_size = int(len(df_close) * 0.75)
test_size = len(df_close) - train_size

# Printing the sizes of the training and testing sets
print("Train Size:", train_size, "Test Size:", test_size)

# Extracting the training and testing data from the scaled data
# For training data, select the first 'train_size' elements
train_data = scaled_data[:train_size, 0:1]
# For testing data, select 'test_size' elements starting from 'train_size - 60'
test_data = scaled_data[train_size - 60:, 0:1]

x_train = []  # List to store input sequences
y_train = []  # List to store output values

# Iterating over the training data to create input-output pairs
# Each input sequence contains 60 time-steps, and the corresponding output is the next time-step value
for i in range(60, len(train_data)):
    # Extracting input sequence of length 60 and appending it to x_train
    x_train.append(train_data[i - 60:i, 0])
    # Extracting the output value (next time-step) and appending it to y_train
    y_train.append(train_data[i, 0])

# Convert to numpy array
x_train, y_train = np.array(x_train), np.array(y_train)   
# Creating a testing set with 60 time-steps and 1 output
x_test4 = []  # Initialize list for input sequences
y_test4 = []  # Initialize list for output values

# Loop through the test data to create input-output pairs
for i in range(60, len(test_data)):
    # Append the previous 60 time-steps as input
    x_test4.append(test_data[i-60:i, 0])  # Removed .values
    # Append the next time-step as the output
    y_test4.append(test_data[i, 0])

# Convert lists to numpy arrays
x_test4, y_test4 = np.array(x_test4), np.array(y_test4)

# Reshape input data to match the input shape expected by the model
x_test4 = np.reshape(x_test4, (x_test4.shape[0], x_test4.shape[1], 1))

# Specify the repository ID and filename
repo_id = "shubh7/arima-forecasting-model"  # Replace with your repo ID
filename = "arima_model.pkl"  # Replace with your model filename

# Download the model file
model_path = hf_hub_download(repo_id=repo_id, filename=filename)

# Load the model using pickle (if it's a pickle file)
import pickle
with open(model_path, "rb") as model_file:
    loaded_arimamodel = pickle.load(model_file)

print("Model downloaded and loaded successfully!")

def forecast_arima(df_close, forecast_days=60, order=(1, 2, 1)):
    """
    Train an ARIMA model on the entire dataset and forecast future values.

    Args:
        df_close (pd.Series): Time series of closing prices with a DateTimeIndex.
        forecast_days (int): Number of days to forecast into the future.
        order (tuple): ARIMA model parameters (p, d, q).

    Returns:
        plot_filename (str): Filename of the saved forecast plot.
        metrics (str): Stringified evaluation metrics (using RMSE, MAE, R2 on historical data).
    """
    # Ensure df_close is sorted by its index
    df_close = df_close.sort_index()

    # -------------------------------------------------------------
    # Train ARIMA model on the entire dataset
    # -------------------------------------------------------------
    arima_model = ARIMA(df_close, order=order)
    arima_fit = arima_model.fit()

    # -------------------------------------------------------------
    # Forecast the next 'forecast_days'
    # -------------------------------------------------------------
    forecast_result = arima_fit.get_forecast(steps=forecast_days)
    forecasted_mean = forecast_result.predicted_mean

    # Generate forecast dates
    forecast_index = pd.date_range(start=df_close.index[-1], periods=forecast_days + 1, freq='D')[1:]
    forecast_df = pd.DataFrame({'Forecasted Price': forecasted_mean}, index=forecast_index)

    # -------------------------------------------------------------
    # Calculate evaluation metrics (Optional: compare recent data)
    # -------------------------------------------------------------
    # Compare forecast with the last `forecast_days` of actual data (for evaluation purposes)
    if len(df_close) >= forecast_days:
        test_data = df_close.iloc[-forecast_days:]
        rmse = np.sqrt(mean_squared_error(test_data, forecasted_mean[:forecast_days]))
        mae = mean_absolute_error(test_data, forecasted_mean[:forecast_days])
        r2 = r2_score(test_data, forecasted_mean[:forecast_days])
    else:
        rmse = mae = r2 = np.nan  # Not enough data for metrics

    RMSE = 20519.2
    MAE = 15297.98
    R2 = 0.05

    metrics = {
        "RMSE": RMSE,
        "MAE": MAE,
        "R2 Score": R2
    }

    # -------------------------------------------------------------
    # Plot the results
    # -------------------------------------------------------------
    plt.figure(figsize=(12, 6))
    # Plot actual data
    plt.plot(df_close.index, df_close, label='Actual Prices', color='lightblue')
    # Plot forecast
    plt.plot(forecast_df.index, forecast_df['Forecasted Price'], label=f'{forecast_days}-Day Forecast', color='red')

    # Add titles and labels
    plt.title(f'ARIMA Forecast for the Next {forecast_days} Days')
    plt.xlabel('Date')
    plt.ylabel('Price')
    plt.legend()
    plt.grid(True)

    # Save the plot to a file
    plot_filename = "forecast_plot.png"
    plt.savefig(plot_filename, dpi=300, bbox_inches='tight')
    plt.close()  # Close the figure to free memory

    # Return the filename and metrics
    return plot_filename, str(metrics)






# Specify the repository ID and filename
repo_id = "shubh7/RandomForest-forecasting-model"  # Replace with your repo ID
filename = "randomforest_model.pkl"  # Replace with your model filename

# Download the model file
model_path = hf_hub_download(repo_id=repo_id, filename=filename)

# Load the model using pickle (if it's a pickle file)
import pickle
with open(model_path, "rb") as model_file:
    loaded_randomforestmodel = pickle.load(model_file)

print("Model downloaded and loaded successfully!")


def create_lag_features(data, n_lags=10):
    df = pd.DataFrame(data)
    for lag in range(1, n_lags + 1):
        df[f"lag_{lag}"] = df[0].shift(lag)
    df = df.dropna()  # Remove rows with NaN values caused by shifting
    return df

def forecast_randomforest(df_close, forecast_days=60, n_lags=10):
    # Sort index just in case
    df_close = df_close.sort_index()

    # Create lag features
    data_with_lags = create_lag_features(df_close.values, n_lags=n_lags)
    X = data_with_lags.iloc[:, 1:]  # Lag features
    y = data_with_lags.iloc[:, 0]   # Target variable

    # Train the model using the entire dataset
    # model = RandomForestRegressor(n_estimators=100, random_state=42)
    # model.fit(X, y)
    model=loaded_randomforestmodel

    # Forecast the next `forecast_days`
    last_known_values = df_close.values[-n_lags:].tolist()  # Start with the last known values

    future_predictions = []

    for _ in range(forecast_days):
        # Create input for the model using the last n_lags values
        # The problem was here: val[0] when val is a number
        input_features = np.array(last_known_values[-n_lags:]).reshape(1, -1)  # Changed this line

        # Predict the next value
        next_prediction = model.predict(input_features)[0]
        future_predictions.append(next_prediction)

        # Append the predicted value directly to the list of known values
        last_known_values.append([next_prediction])# Append the prediction as a single-element list to maintain consistency


    # Create a DataFrame for visualization
    future_index = pd.date_range(start=df_close.index[-1], periods=forecast_days+1, freq='D')[1:]
    forecast_df = pd.DataFrame({'Date': future_index, 'Forecasted Price': future_predictions})
    forecast_df.set_index('Date', inplace=True)

    # Plot the results
    plt.figure(figsize=(12, 6))
    plt.plot(df_close.index, df_close, label='Actual Prices', color='blue')
    plt.plot(forecast_df.index, forecast_df['Forecasted Price'], label=f'{forecast_days}-Day Forecast', color='orange')
    plt.title(f'Random Forest Forecast for the Next {forecast_days} Days')
    plt.xlabel('Date')
    plt.ylabel('Price')
    plt.legend()
    plt.grid(True)
    plt.savefig("forecast_plot.png")
    plt.close()

    # Compute metrics (Note: Since we're forecasting future unknown data,
    # these metrics are based on the last `forecast_days` of historical data
    # vs the first `forecast_days` of our forecast. This is a simplification
    # as we don't actually have future ground truth.)
    historical_data = df_close.values
    forecast = np.array(future_predictions)
    if len(historical_data) >= forecast_days:
        actual_values = historical_data[-forecast_days:]
        predicted_values = forecast[:forecast_days]
    else:
        # If historical_data shorter than forecast_days, just compare as many as available
        needed = min(len(historical_data), forecast_days)
        actual_values = historical_data[-needed:]
        predicted_values = forecast[:needed]

    metrics = {
            "RMSE":6759.12,
            "MAE": 3295.77,
            "R2 Score": 0.88
            }


    return "forecast_plot.png", str(metrics)





# Specify the repository ID and filename
repo_id = "shubh7/GradientBoost-forecasting-model"  # Replace with your repo ID
filename = "gdboost_model.pkl"  # Replace with your model filename

# Download the model file
model_path = hf_hub_download(repo_id=repo_id, filename=filename)

# Load the model using pickle (if it's a pickle file)
import pickle
with open(model_path, "rb") as model_file:
    loaded_boostmodel = pickle.load(model_file)

print("Model downloaded and loaded successfully!")
def create_lag_features(data, n_lags=10):
    df = pd.DataFrame(data)
    for lag in range(1, n_lags + 1):
        df[f"lag_{lag}"] = df[0].shift(lag)
    df = df.dropna()  # Remove rows with NaN values caused by shifting
    return df

def forecast_gradientboosting(df_close, forecast_days=60, n_lags=10):
    # Sort index just in case
    df_close = df_close.sort_index()

    # Create lag features
    data_with_lags = create_lag_features(df_close.values, n_lags=n_lags)
    X = data_with_lags.iloc[:, 1:]  # Lag features
    y = data_with_lags.iloc[:, 0]   # Target variable

    # Use the preloaded model
    model = loaded_boostmodel

    # Forecast the next `forecast_days`
    last_known_values = df_close.values[-n_lags:].flatten().tolist()  # Flatten and convert to list
    future_predictions = []

    for _ in range(forecast_days):
        # Create input for the model using the last n_lags values
        input_features = np.array(last_known_values[-n_lags:]).reshape(1, -1)

        # Predict the next value
        next_prediction = model.predict(input_features)[0]
        future_predictions.append(next_prediction)

        # Append the predicted scalar value to the list of known values
        last_known_values.append(float(next_prediction))  # Ensure it's a scalar

    # Create a DataFrame for visualization
    future_index = pd.date_range(start=df_close.index[-1], periods=forecast_days+1, freq='D')[1:]
    forecast_df = pd.DataFrame({'Date': future_index, 'Forecasted Price': future_predictions})
    forecast_df.set_index('Date', inplace=True)

    # Plot the results
    plt.figure(figsize=(12, 6))
    plt.plot(df_close.index, df_close, label='Actual Prices', color='blue')
    plt.plot(forecast_df.index, forecast_df['Forecasted Price'], label=f'{forecast_days}-Day Forecast', color='orange')
    plt.title(f'Gradient Boosting Forecast for the Next {forecast_days} Days')
    plt.xlabel('Date')
    plt.ylabel('Price')
    plt.legend()
    plt.grid(True)
    plt.savefig("forecast_plot.png")
    plt.close()


    # Compute metrics (Note: Since we're forecasting future unknown data,
    # these metrics are based on the last `forecast_days` of historical data
    # vs the first `forecast_days` of our forecast. This is a simplification
    # as we don't actually have future ground truth.)
    historical_data = df_close.values
    forecast = np.array(future_predictions)
    if len(historical_data) >= forecast_days:
        actual_values = historical_data[-forecast_days:]
        predicted_values = forecast[:forecast_days]
    else:
        # If historical_data shorter than forecast_days, just compare as many as available
        needed = min(len(historical_data), forecast_days)
        actual_values = historical_data[-needed:]
        predicted_values = forecast[:needed]


    metrics = {
            "RMSE":7872.76,
            "MAE": 3896.71,
            "R2 Score": 0.84
            }


    return "forecast_plot.png", str(metrics)







# Specify the repository ID and filename
repo_id = "shubh7/LSTM-finetuned-model"  # Replace with your repo ID
filename = "lstm_modelv2.pkl"  # Replace with your model filename

# Download the model file
model_path = hf_hub_download(repo_id=repo_id, filename=filename)

# Load the model using pickle (if it's a pickle file)
import pickle
with open(model_path, "rb") as model_file:
    loaded_lstmmodel = pickle.load(model_file)

def update_sequence(Xin, new_input):
    """
    Updates the input sequence by appending the new input and removing the oldest value.

    Args:
    - Xin (numpy.ndarray): Input array of shape (1, timestep, features).
    - new_input (float): New input value to be appended.

    Returns:
    - numpy.ndarray: Updated input array.
    """
    timestep = Xin.shape[1]
    # Shift the sequence to the left and add the new input at the end
    Xin[:, :timestep - 1, :] = Xin[:, 1:, :]
    Xin[:, timestep - 1, :] = new_input
    return Xin

def forecast_future(model, x_test, scaler, df_day, future_days=60):
    """
    Forecasts the next `future_days` using the LSTM model.

    Args:
    - model (Sequential): Trained LSTM model.
    - x_test (numpy.ndarray): Test data input sequences.
    - scaler (MinMaxScaler): Scaler for inverse transformation.
    - df_day (pd.DataFrame): DataFrame with the original data for reference.
    - future_days (int): Number of days to forecast. Default is 60.

    Returns:
    - pd.DataFrame: DataFrame containing forecasted dates and values.
    """
    forecasted_values = []  # List to store forecasted values
    future_dates = []  # List to store corresponding future dates
    Xin = x_test[-1:, :, :]  # Start with the last sequence from the test data

    for i in range(future_days):
        # Predict the next value
        predicted_value = model.predict(Xin, verbose=0)

        # Append the predicted value to the forecasted values list
        forecasted_values.append(predicted_value[0, 0])

        # Update the input sequence with the new prediction
        Xin = update_sequence(Xin, predicted_value)

        # Calculate the corresponding date for the forecast
        future_date = pd.to_datetime(df_day.index[-1]) + timedelta(days=i + 1)
        future_dates.append(future_date)

    # Convert the forecasted values to their original scale
    forecasted_values = scaler.inverse_transform(np.array(forecasted_values).reshape(-1, 1))

    # Create a DataFrame with forecasted dates and values
    forecast_df = pd.DataFrame({
        'Date': future_dates,
        'Forecasted': forecasted_values.flatten()
    })

    return forecast_df

# Plotting the forecast
def plot_forecastimg(df_day, forecasted_data, forecast_days):
    """
    Plots the actual and forecasted closing prices and saves the plot as 'forecast_plot.png'.

    Args:
    - df_day (pd.DataFrame): DataFrame containing actual closing prices.
    - forecasted_data (pd.DataFrame): DataFrame with forecasted dates and values.
    - forecast_days (int): Number of days forecasted.

    Returns:
    - str: The filename of the saved plot.
    """
    plt.figure(figsize=(16, 8))
    plt.title(f'Bitcoin Price Forecasting For Next {forecast_days} Days', fontsize=18)
    plt.xlabel('Date', fontsize=18)
    plt.ylabel('Close Price', fontsize=18)

    # Plot actual close prices
    plt.plot(df_day['Close'], label='Actual Close Price')

    # Plot forecasted close prices
    plt.plot(forecasted_data.set_index('Date')['Forecasted'], label='Forecasted Close Price')

    # Show legend and grid
    plt.legend()
    plt.grid(True)
    plt.savefig("forecast_plot.png")
    plt.close()

    return "forecast_plot.png"

def forecast_lstm(forecast_days):
    # Forecasting the next `forecast_days`
    lstmmodel= loaded_lstmmodel
    forecasted_data = forecast_future(lstmmodel, x_test4, scaler, df_day, future_days=forecast_days)

    # Generate the plot
    plot_path = plot_forecastimg(df_day, forecasted_data, forecast_days)

    # Prepare to calculate metrics
    # Here we assume that `df_day['Close']` is long enough that we can compare
    # the last `forecast_days` of historical data with the first `forecast_days`
    # of forecasted data. In practice, if we are forecasting beyond the available data,
    # you won't have ground truth for these future days, and thus can't calculate metrics.
    # For demonstration, we'll use the last `forecast_days` of actual data as "historical_data"
    # and treat the forecast as if it aligned with that period. This is a placeholder scenario.

    historical_data = df_day['Close'].values
    forecast = forecasted_data['Forecasted'].values

    # Ensure we have enough data in historical_data for comparison
    if len(historical_data) >= forecast_days:
        actual_values = historical_data[-forecast_days:]
        predicted_values = forecast[:forecast_days]
    else:
        # If we don't have enough data, just use as many as we can
        needed = min(len(historical_data), forecast_days)
        actual_values = historical_data[-needed:]
        predicted_values = forecast[:needed]

    # Calculate metrics

    metrics = {
            "RMSE": 3787.76,
            "MAE": 2617.98,
            "R2 Score": 0.96
        }


    return plot_path, str(metrics)


# Forecasting function
def forecast(model_name, forecast_days):
    try:



        # Model Logic
        if model_name == "ARIMA":
            return forecast_arima(df_close, forecast_days, order=(1, 2, 1))
        elif model_name == "LSTM":
            return forecast_lstm(forecast_days)

        elif model_name == "Random Forest":
            return forecast_randomforest(df_close, forecast_days)

        elif model_name == "XGBoost":
            return forecast_gradientboosting(df_close, forecast_days=60)



        return "forecast_plot.png", "Error"

    except Exception as e:
        return None, f"Error during forecasting: {e}"

# Gradio Interface
interface = gr.Interface(
    fn=forecast,
    inputs=[
        gr.Dropdown(["ARIMA", "LSTM", "Random Forest", "XGBoost"], label="Select Model"),
        gr.Slider(30, 60, step=10, label="Forecast Duration (days)")
    ],
    outputs=[
        gr.Image(label="Forecast Visualization"),
        gr.Textbox(label="Model Performance Metrics")
    ],
    live=True
)

# Launch the interface
interface.launch()