Spaces:
Runtime error
Runtime error
from .networks import U2NET | |
import torchvision.transforms as transforms | |
import torch.nn.functional as F | |
import os | |
from PIL import Image | |
from collections import OrderedDict | |
import torch | |
device = 'cuda' if torch.cuda.is_available() else "cpu" | |
if device == 'cuda': | |
torch.cuda.empty_cache() | |
# for hugging face | |
BASE_DIR = "/home/path/app" | |
# BASE_DIR = os.getcwd() | |
image_dir = 'cloth' | |
result_dir = 'cloth_mask' | |
checkpoint_path = 'cloth_segmentation/checkpoints/cloth_segm_u2net_latest.pth' | |
def load_checkpoint_mgpu(model, checkpoint_path): | |
if not os.path.exists(checkpoint_path): | |
print("----No checkpoints at given path----") | |
return | |
model_state_dict = torch.load( | |
checkpoint_path, map_location=torch.device("cpu")) | |
new_state_dict = OrderedDict() | |
for k, v in model_state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
model.load_state_dict(new_state_dict) | |
print("----checkpoints loaded from path: {}----".format(checkpoint_path)) | |
return model | |
class Normalize_image(object): | |
"""Normalize given tensor into given mean and standard dev | |
Args: | |
mean (float): Desired mean to substract from tensors | |
std (float): Desired std to divide from tensors | |
""" | |
def __init__(self, mean, std): | |
assert isinstance(mean, (float)) | |
if isinstance(mean, float): | |
self.mean = mean | |
if isinstance(std, float): | |
self.std = std | |
self.normalize_1 = transforms.Normalize(self.mean, self.std) | |
self.normalize_3 = transforms.Normalize( | |
[self.mean] * 3, [self.std] * 3) | |
self.normalize_18 = transforms.Normalize( | |
[self.mean] * 18, [self.std] * 18) | |
def __call__(self, image_tensor): | |
if image_tensor.shape[0] == 1: | |
return self.normalize_1(image_tensor) | |
elif image_tensor.shape[0] == 3: | |
return self.normalize_3(image_tensor) | |
elif image_tensor.shape[0] == 18: | |
return self.normalize_18(image_tensor) | |
else: | |
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18" | |
def get_palette(num_cls): | |
""" Returns the color map for visualizing the segmentation mask. | |
Args: | |
num_cls: Number of classes | |
Returns: | |
The color map | |
""" | |
n = num_cls | |
palette = [0] * (n * 3) | |
for j in range(0, n): | |
lab = j | |
palette[j * 3 + 0] = 0 | |
palette[j * 3 + 1] = 0 | |
palette[j * 3 + 2] = 0 | |
i = 0 | |
while lab: | |
palette[j * 3 + 0] = 255 | |
palette[j * 3 + 1] = 255 | |
palette[j * 3 + 2] = 255 | |
# palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) | |
# palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) | |
# palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) | |
i += 1 | |
lab >>= 3 | |
return palette | |
def generate_cloth_mask(): | |
transforms_list = [] | |
transforms_list += [transforms.ToTensor()] | |
transforms_list += [Normalize_image(0.5, 0.5)] | |
transform_rgb = transforms.Compose(transforms_list) | |
net = U2NET(in_ch=3, out_ch=4) | |
with torch.no_grad(): | |
net = load_checkpoint_mgpu(net, checkpoint_path) | |
net = net.to(device) | |
net = net.eval() | |
palette = get_palette(4) | |
images_list = sorted(os.listdir(image_dir)) | |
for image_name in images_list: | |
img = Image.open(os.path.join( | |
image_dir, image_name)).convert('RGB') | |
img_size = img.size | |
img = img.resize((768, 768), Image.Resampling.BICUBIC) | |
image_tensor = transform_rgb(img) | |
image_tensor = torch.unsqueeze(image_tensor, 0) | |
output_tensor = net(image_tensor.to(device)) | |
output_tensor = F.log_softmax(output_tensor[0], dim=1) | |
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1] | |
output_tensor = torch.squeeze(output_tensor, dim=0) | |
output_tensor = torch.squeeze(output_tensor, dim=0) | |
output_arr = output_tensor.cpu().numpy() | |
output_img = Image.fromarray(output_arr.astype('uint8'), mode='L') | |
output_img = output_img.resize(img_size, Image.Resampling.BICUBIC) | |
output_img.putpalette(palette) | |
output_img = output_img.convert('L') | |
output_img.save(os.path.join(result_dir, image_name[:-4]+'.jpg')) | |
if __name__ == '__main__': | |
generate_cloth_mask() | |