Spaces:
Sleeping
Sleeping
make it betr
#3
by
nroggendorff
- opened
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
from translation import Translator, LANGUAGES, MODEL_URL
|
5 |
-
LANGUAGES_LIST = list(LANGUAGES.keys())
|
6 |
|
|
|
7 |
|
8 |
def translate_wrapper(text, src, trg, by_sentence=True, preprocess=True, random=False, num_beams=4):
|
9 |
src_lang = LANGUAGES.get(src)
|
10 |
tgt_lang = LANGUAGES.get(trg)
|
11 |
-
# if src == trg:
|
12 |
-
# return 'Please choose two different languages'
|
13 |
result = translator.translate(
|
14 |
text=text,
|
15 |
src_lang=src_lang,
|
@@ -21,34 +18,28 @@ def translate_wrapper(text, src, trg, by_sentence=True, preprocess=True, random=
|
|
21 |
)
|
22 |
return result
|
23 |
|
24 |
-
|
25 |
article = f"""
|
26 |
This is the demo for a NLLB-200-600M model fine-tuned for a few (mostly new) languages.
|
27 |
-
|
28 |
The model itself is available at https://huggingface.co/{MODEL_URL}
|
29 |
-
|
30 |
If you want to host in on your own backend, consider running this dockerized app: https://github.com/slone-nlp/nllb-docker-demo.
|
31 |
"""
|
32 |
|
33 |
-
|
34 |
interface = gr.Interface(
|
35 |
translate_wrapper,
|
36 |
[
|
37 |
-
gr.Textbox(label="Text", lines=2, placeholder='text to translate
|
38 |
-
gr.Dropdown(LANGUAGES_LIST, type="value", label='
|
39 |
-
gr.Dropdown(LANGUAGES_LIST, type="value", label='
|
40 |
-
gr.Checkbox(label="by
|
41 |
-
gr.Checkbox(label="
|
42 |
-
gr.Checkbox(label="
|
43 |
-
gr.
|
44 |
],
|
45 |
"text",
|
46 |
-
title='Erzya-Russian
|
47 |
article=article,
|
48 |
)
|
49 |
|
50 |
-
|
51 |
if __name__ == '__main__':
|
52 |
translator = Translator()
|
53 |
-
|
54 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
|
|
|
3 |
from translation import Translator, LANGUAGES, MODEL_URL
|
|
|
4 |
|
5 |
+
LANGUAGES_LIST = list(LANGUAGES.keys())
|
6 |
|
7 |
def translate_wrapper(text, src, trg, by_sentence=True, preprocess=True, random=False, num_beams=4):
|
8 |
src_lang = LANGUAGES.get(src)
|
9 |
tgt_lang = LANGUAGES.get(trg)
|
|
|
|
|
10 |
result = translator.translate(
|
11 |
text=text,
|
12 |
src_lang=src_lang,
|
|
|
18 |
)
|
19 |
return result
|
20 |
|
|
|
21 |
article = f"""
|
22 |
This is the demo for a NLLB-200-600M model fine-tuned for a few (mostly new) languages.
|
|
|
23 |
The model itself is available at https://huggingface.co/{MODEL_URL}
|
|
|
24 |
If you want to host in on your own backend, consider running this dockerized app: https://github.com/slone-nlp/nllb-docker-demo.
|
25 |
"""
|
26 |
|
|
|
27 |
interface = gr.Interface(
|
28 |
translate_wrapper,
|
29 |
[
|
30 |
+
gr.Textbox(label="Text to Translate", lines=2, placeholder='Enter text to translate'),
|
31 |
+
gr.Dropdown(LANGUAGES_LIST, type="value", label='Source Language', value=LANGUAGES_LIST[0], description='Select the source language'),
|
32 |
+
gr.Dropdown(LANGUAGES_LIST, type="value", label='Target Language', value=LANGUAGES_LIST[1], description='Select the target language'),
|
33 |
+
gr.Checkbox(label="Translate by Sentence", value=True, description='If checked, the text will be translated sentence by sentence'),
|
34 |
+
gr.Checkbox(label="Apply Text Preprocessing", value=True, description='If checked, the text will be preprocessed before translation'),
|
35 |
+
gr.Checkbox(label="Randomize", value=False, description='If checked, the translation will use random sampling'),
|
36 |
+
gr.Slider(minimum=1, maximum=5, step=1, label="Number of Beams", value=4, description='Select the number of beams for the translation'),
|
37 |
],
|
38 |
"text",
|
39 |
+
title='Erzya-Russian Translation',
|
40 |
article=article,
|
41 |
)
|
42 |
|
|
|
43 |
if __name__ == '__main__':
|
44 |
translator = Translator()
|
45 |
+
interface.launch()
|
|