metric_depth_estimation / unidepth /utils /positional_embedding.py
smhh24's picture
Upload 90 files
560b597 verified
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""
from math import pi
from typing import Optional
import torch
import torch.nn as nn
from einops import rearrange, repeat
class PositionEmbeddingSine(nn.Module):
def __init__(
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * pi
self.scale = scale
def forward(
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
if mask is None:
mask = torch.zeros(
(x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool
)
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (
2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats
)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def __repr__(self, _repr_indent=4):
head = "Positional encoding " + self.__class__.__name__
body = [
"num_pos_feats: {}".format(self.num_pos_feats),
"temperature: {}".format(self.temperature),
"normalize: {}".format(self.normalize),
"scale: {}".format(self.scale),
]
# _repr_indent = 4
lines = [head] + [" " * _repr_indent + line for line in body]
return "\n".join(lines)
class LearnedSinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
self.weights = nn.Parameter(torch.randn(half_dim))
def forward(self, x):
x = rearrange(x, "b -> b 1")
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
fouriered = torch.cat((x, fouriered), dim=-1)
return fouriered
def broadcat(tensors, dim=-1):
num_tensors = len(tensors)
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
shape_len = list(shape_lens)[0]
dim = (dim + shape_len) if dim < 0 else dim
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
assert all(
[*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]
), "invalid dimensions for broadcastable concatentation"
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
expanded_dims.insert(dim, (dim, dims[dim]))
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
return torch.cat(tensors, dim=dim)
def rotate_half(x):
x = rearrange(x, "... (d r) -> ... d r", r=2)
x1, x2 = x.unbind(dim=-1)
x = torch.stack((-x2, x1), dim=-1)
return rearrange(x, "... d r -> ... (d r)")
class VisionRotaryEmbedding(nn.Module):
def __init__(
self,
dim,
pt_seq_len,
ft_seq_len=None,
custom_freqs=None,
freqs_for="lang",
theta=10000,
max_freq=10,
num_freqs=1,
):
super().__init__()
if custom_freqs:
freqs = custom_freqs
elif freqs_for == "lang":
freqs = 1.0 / (
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
)
elif freqs_for == "pixel":
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
elif freqs_for == "constant":
freqs = torch.ones(num_freqs).float()
else:
raise ValueError(f"unknown modality {freqs_for}")
if ft_seq_len is None:
ft_seq_len = pt_seq_len
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
freqs_h = torch.einsum("..., f -> ... f", t, freqs)
freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2)
freqs_w = torch.einsum("..., f -> ... f", t, freqs)
freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2)
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1)
self.register_buffer("freqs_cos", freqs.cos())
self.register_buffer("freqs_sin", freqs.sin())
print("======== shape of rope freq", self.freqs_cos.shape, "========")
def forward(self, t, start_index=0):
rot_dim = self.freqs_cos.shape[-1]
end_index = start_index + rot_dim
assert (
rot_dim <= t.shape[-1]
), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}"
t_left, t, t_right = (
t[..., :start_index],
t[..., start_index:end_index],
t[..., end_index:],
)
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
return torch.cat((t_left, t, t_right), dim=-1)
class VisionRotaryEmbeddingFast(nn.Module):
def __init__(
self,
dim,
pt_seq_len,
ft_seq_len=None,
custom_freqs=None,
freqs_for="lang",
theta=10000,
max_freq=10,
num_freqs=1,
):
super().__init__()
if custom_freqs:
freqs = custom_freqs
elif freqs_for == "lang":
freqs = 1.0 / (
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
)
elif freqs_for == "pixel":
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
elif freqs_for == "constant":
freqs = torch.ones(num_freqs).float()
else:
raise ValueError(f"unknown modality {freqs_for}")
if ft_seq_len is None:
ft_seq_len = pt_seq_len
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
freqs = torch.einsum("..., f -> ... f", t, freqs)
freqs = repeat(freqs, "... n -> ... (n r)", r=2)
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1)
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
self.register_buffer("freqs_cos", freqs_cos)
self.register_buffer("freqs_sin", freqs_sin)
def forward(self, t):
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
from math import log2
def generate_fourier_features(
x: torch.Tensor,
dim: int = 512,
max_freq: int = 64,
use_cos: bool = False,
use_log: bool = False,
cat_orig: bool = False,
):
x_orig = x
device, dtype, input_dim = x.device, x.dtype, x.shape[-1]
num_bands = dim // (2 * input_dim) if use_cos else dim // input_dim
if use_log:
scales = 2.0 ** torch.linspace(
0.0, log2(max_freq), steps=num_bands, device=device, dtype=dtype
)
else:
scales = torch.linspace(
1.0, max_freq / 2, num_bands, device=device, dtype=dtype
)
x = x.unsqueeze(-1)
scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)]
x = x * scales * pi
x = torch.cat(
(
[x.sin(), x.cos()]
if use_cos
else [
x.sin(),
]
),
dim=-1,
)
x = x.flatten(-2)
if cat_orig:
return torch.cat((x, x_orig), dim=-1)
return x
# from PIL import Image
# from unidepth.utils import image_grid, colorize
# if __name__ == "__main__":
# H, W = 512, 512
# resolution = 128
# mesh = torch.meshgrid(torch.linspace(-1, 1, H), torch.linspace(-1, 1, W))
# mesh = torch.stack(mesh, dim=0).unsqueeze(0)
# mesh = mesh.view(1, 2, -1).permute(0, 2, 1)
# features = generate_fourier_features(mesh, dim=32, max_freq=resolution, use_log=True)
# channels = features.shape[-1]
# print(features.shape)
# features = features[0].view(H, W, channels).permute(2, 0, 1).numpy()
# Image.fromarray(image_grid([colorize(1+x, 0.0, 2.0, "viridis") for x in features], rows=8, cols=4)).save(f"tmp_{resolution}.png")