Spaces:
Sleeping
Sleeping
""" | |
Author: Luigi Piccinelli | |
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) | |
""" | |
from math import pi | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from einops import rearrange, repeat | |
class PositionEmbeddingSine(nn.Module): | |
def __init__( | |
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None | |
): | |
super().__init__() | |
self.num_pos_feats = num_pos_feats | |
self.temperature = temperature | |
self.normalize = normalize | |
if scale is not None and normalize is False: | |
raise ValueError("normalize should be True if scale is passed") | |
if scale is None: | |
scale = 2 * pi | |
self.scale = scale | |
def forward( | |
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None | |
) -> torch.Tensor: | |
if mask is None: | |
mask = torch.zeros( | |
(x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool | |
) | |
not_mask = ~mask | |
y_embed = not_mask.cumsum(1, dtype=torch.float32) | |
x_embed = not_mask.cumsum(2, dtype=torch.float32) | |
if self.normalize: | |
eps = 1e-6 | |
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | |
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | |
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | |
dim_t = self.temperature ** ( | |
2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats | |
) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
pos_x = torch.stack( | |
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos_y = torch.stack( | |
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
return pos | |
def __repr__(self, _repr_indent=4): | |
head = "Positional encoding " + self.__class__.__name__ | |
body = [ | |
"num_pos_feats: {}".format(self.num_pos_feats), | |
"temperature: {}".format(self.temperature), | |
"normalize: {}".format(self.normalize), | |
"scale: {}".format(self.scale), | |
] | |
# _repr_indent = 4 | |
lines = [head] + [" " * _repr_indent + line for line in body] | |
return "\n".join(lines) | |
class LearnedSinusoidalPosEmb(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
assert (dim % 2) == 0 | |
half_dim = dim // 2 | |
self.weights = nn.Parameter(torch.randn(half_dim)) | |
def forward(self, x): | |
x = rearrange(x, "b -> b 1") | |
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi | |
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) | |
fouriered = torch.cat((x, fouriered), dim=-1) | |
return fouriered | |
def broadcat(tensors, dim=-1): | |
num_tensors = len(tensors) | |
shape_lens = set(list(map(lambda t: len(t.shape), tensors))) | |
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" | |
shape_len = list(shape_lens)[0] | |
dim = (dim + shape_len) if dim < 0 else dim | |
dims = list(zip(*map(lambda t: list(t.shape), tensors))) | |
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] | |
assert all( | |
[*map(lambda t: len(set(t[1])) <= 2, expandable_dims)] | |
), "invalid dimensions for broadcastable concatentation" | |
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) | |
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) | |
expanded_dims.insert(dim, (dim, dims[dim])) | |
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) | |
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) | |
return torch.cat(tensors, dim=dim) | |
def rotate_half(x): | |
x = rearrange(x, "... (d r) -> ... d r", r=2) | |
x1, x2 = x.unbind(dim=-1) | |
x = torch.stack((-x2, x1), dim=-1) | |
return rearrange(x, "... d r -> ... (d r)") | |
class VisionRotaryEmbedding(nn.Module): | |
def __init__( | |
self, | |
dim, | |
pt_seq_len, | |
ft_seq_len=None, | |
custom_freqs=None, | |
freqs_for="lang", | |
theta=10000, | |
max_freq=10, | |
num_freqs=1, | |
): | |
super().__init__() | |
if custom_freqs: | |
freqs = custom_freqs | |
elif freqs_for == "lang": | |
freqs = 1.0 / ( | |
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) | |
) | |
elif freqs_for == "pixel": | |
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi | |
elif freqs_for == "constant": | |
freqs = torch.ones(num_freqs).float() | |
else: | |
raise ValueError(f"unknown modality {freqs_for}") | |
if ft_seq_len is None: | |
ft_seq_len = pt_seq_len | |
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len | |
freqs_h = torch.einsum("..., f -> ... f", t, freqs) | |
freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2) | |
freqs_w = torch.einsum("..., f -> ... f", t, freqs) | |
freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2) | |
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1) | |
self.register_buffer("freqs_cos", freqs.cos()) | |
self.register_buffer("freqs_sin", freqs.sin()) | |
print("======== shape of rope freq", self.freqs_cos.shape, "========") | |
def forward(self, t, start_index=0): | |
rot_dim = self.freqs_cos.shape[-1] | |
end_index = start_index + rot_dim | |
assert ( | |
rot_dim <= t.shape[-1] | |
), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" | |
t_left, t, t_right = ( | |
t[..., :start_index], | |
t[..., start_index:end_index], | |
t[..., end_index:], | |
) | |
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) | |
return torch.cat((t_left, t, t_right), dim=-1) | |
class VisionRotaryEmbeddingFast(nn.Module): | |
def __init__( | |
self, | |
dim, | |
pt_seq_len, | |
ft_seq_len=None, | |
custom_freqs=None, | |
freqs_for="lang", | |
theta=10000, | |
max_freq=10, | |
num_freqs=1, | |
): | |
super().__init__() | |
if custom_freqs: | |
freqs = custom_freqs | |
elif freqs_for == "lang": | |
freqs = 1.0 / ( | |
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) | |
) | |
elif freqs_for == "pixel": | |
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi | |
elif freqs_for == "constant": | |
freqs = torch.ones(num_freqs).float() | |
else: | |
raise ValueError(f"unknown modality {freqs_for}") | |
if ft_seq_len is None: | |
ft_seq_len = pt_seq_len | |
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len | |
freqs = torch.einsum("..., f -> ... f", t, freqs) | |
freqs = repeat(freqs, "... n -> ... (n r)", r=2) | |
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1) | |
freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) | |
freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) | |
self.register_buffer("freqs_cos", freqs_cos) | |
self.register_buffer("freqs_sin", freqs_sin) | |
def forward(self, t): | |
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin | |
from math import log2 | |
def generate_fourier_features( | |
x: torch.Tensor, | |
dim: int = 512, | |
max_freq: int = 64, | |
use_cos: bool = False, | |
use_log: bool = False, | |
cat_orig: bool = False, | |
): | |
x_orig = x | |
device, dtype, input_dim = x.device, x.dtype, x.shape[-1] | |
num_bands = dim // (2 * input_dim) if use_cos else dim // input_dim | |
if use_log: | |
scales = 2.0 ** torch.linspace( | |
0.0, log2(max_freq), steps=num_bands, device=device, dtype=dtype | |
) | |
else: | |
scales = torch.linspace( | |
1.0, max_freq / 2, num_bands, device=device, dtype=dtype | |
) | |
x = x.unsqueeze(-1) | |
scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)] | |
x = x * scales * pi | |
x = torch.cat( | |
( | |
[x.sin(), x.cos()] | |
if use_cos | |
else [ | |
x.sin(), | |
] | |
), | |
dim=-1, | |
) | |
x = x.flatten(-2) | |
if cat_orig: | |
return torch.cat((x, x_orig), dim=-1) | |
return x | |
# from PIL import Image | |
# from unidepth.utils import image_grid, colorize | |
# if __name__ == "__main__": | |
# H, W = 512, 512 | |
# resolution = 128 | |
# mesh = torch.meshgrid(torch.linspace(-1, 1, H), torch.linspace(-1, 1, W)) | |
# mesh = torch.stack(mesh, dim=0).unsqueeze(0) | |
# mesh = mesh.view(1, 2, -1).permute(0, 2, 1) | |
# features = generate_fourier_features(mesh, dim=32, max_freq=resolution, use_log=True) | |
# channels = features.shape[-1] | |
# print(features.shape) | |
# features = features[0].view(H, W, channels).permute(2, 0, 1).numpy() | |
# Image.fromarray(image_grid([colorize(1+x, 0.0, 2.0, "viridis") for x in features], rows=8, cols=4)).save(f"tmp_{resolution}.png") | |