MeshFormer / gradio_demo.py
NCJ's picture
add sam queue
1786865 verified
import gradio as gr
import numpy as np
import os
import json
import subprocess
from PIL import Image
from functools import partial
from datetime import datetime
from sam_inference import get_sam_predictor, sam_seg
from utils import blend_seg, blend_seg_pure
import cv2
import uuid
import torch
import trimesh
from huggingface_hub import snapshot_download
from gradio_model3dcolor import Model3DColor
# from gradio_model3dnormal import Model3DNormal
code_dir = snapshot_download("sudo-ai/MeshFormer-API", token=os.environ['HF_TOKEN'])
with open(f'{code_dir}/api.json', 'r') as file:
api_dict = json.load(file)
SEG_CMD = api_dict["SEG_CMD"]
MESH_CMD = api_dict["MESH_CMD"]
STYLE = """
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-T3c6CoIi6uLrA9TneNEoa7RxnatzjcDSCmG1MXxSR1GAsXEV/Dwwykc2MPK8M2HN" crossorigin="anonymous">
<style>
.alert, .alert div, .alert b {
color: black !important;
}
</style>
"""
# info (info-circle-fill), cursor (hand-index-thumb), wait (hourglass-split), done (check-circle)
ICONS = {
"info": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="#0d6efd" class="bi bi-info-circle-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
<path d="M8 16A8 8 0 1 0 8 0a8 8 0 0 0 0 16zm.93-9.412-1 4.705c-.07.34.029.533.304.533.194 0 .487-.07.686-.246l-.088.416c-.287.346-.92.598-1.465.598-.703 0-1.002-.422-.808-1.319l.738-3.468c.064-.293.006-.399-.287-.47l-.451-.081.082-.381 2.29-.287zM8 5.5a1 1 0 1 1 0-2 1 1 0 0 1 0 2z"/>
</svg>""",
"cursor": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="#0dcaf0" class="bi bi-hand-index-thumb-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
<path d="M8.5 1.75v2.716l.047-.002c.312-.012.742-.016 1.051.046.28.056.543.18.738.288.273.152.456.385.56.642l.132-.012c.312-.024.794-.038 1.158.108.37.148.689.487.88.716.075.09.141.175.195.248h.582a2 2 0 0 1 1.99 2.199l-.272 2.715a3.5 3.5 0 0 1-.444 1.389l-1.395 2.441A1.5 1.5 0 0 1 12.42 16H6.118a1.5 1.5 0 0 1-1.342-.83l-1.215-2.43L1.07 8.589a1.517 1.517 0 0 1 2.373-1.852L5 8.293V1.75a1.75 1.75 0 0 1 3.5 0z"/>
</svg>""",
"wait": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="#6c757d" class="bi bi-hourglass-split flex-shrink-0 me-2" viewBox="0 0 16 16">
<path d="M2.5 15a.5.5 0 1 1 0-1h1v-1a4.5 4.5 0 0 1 2.557-4.06c.29-.139.443-.377.443-.59v-.7c0-.213-.154-.451-.443-.59A4.5 4.5 0 0 1 3.5 3V2h-1a.5.5 0 0 1 0-1h11a.5.5 0 0 1 0 1h-1v1a4.5 4.5 0 0 1-2.557 4.06c-.29.139-.443.377-.443.59v.7c0 .213.154.451.443.59A4.5 4.5 0 0 1 12.5 13v1h1a.5.5 0 0 1 0 1h-11zm2-13v1c0 .537.12 1.045.337 1.5h6.326c.216-.455.337-.963.337-1.5V2h-7zm3 6.35c0 .701-.478 1.236-1.011 1.492A3.5 3.5 0 0 0 4.5 13s.866-1.299 3-1.48V8.35zm1 0v3.17c2.134.181 3 1.48 3 1.48a3.5 3.5 0 0 0-1.989-3.158C8.978 9.586 8.5 9.052 8.5 8.351z"/>
</svg>""",
"done": """<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="#198754" class="bi bi-check-circle-fill flex-shrink-0 me-2" viewBox="0 0 16 16">
<path d="M16 8A8 8 0 1 1 0 8a8 8 0 0 1 16 0zm-3.97-3.03a.75.75 0 0 0-1.08.022L7.477 9.417 5.384 7.323a.75.75 0 0 0-1.06 1.06L6.97 11.03a.75.75 0 0 0 1.079-.02l3.992-4.99a.75.75 0 0 0-.01-1.05z"/>
</svg>""",
}
icons2alert = {
"info": "primary", # blue
"cursor": "info", # light blue
"wait": "secondary", # gray
"done": "success", # green
}
def message(text, icon_type="info"):
return f"""{STYLE} <div class="alert alert-{icons2alert[icon_type]} d-flex align-items-center" role="alert"> {ICONS[icon_type]}
<div>
{text}
</div>
</div>"""
def preprocess(tmp_dir, input_img, idx=None):
if idx is not None:
print("image idx:", int(idx))
input_img = Image.open(input_img[int(idx)]["name"])
input_img.save(f"{tmp_dir}/input.png")
# print(SEG_CMD.format(tmp_dir=tmp_dir))
os.system(SEG_CMD.format(tmp_dir=tmp_dir))
processed_img = Image.open(f"{tmp_dir}/seg.png")
return processed_img.resize((320, 320), Image.Resampling.LANCZOS)
def ply_to_glb(ply_path):
result = subprocess.run(
["python", "ply2glb.py", "--", ply_path],
capture_output=True,
text=True,
)
print("Output of blender script:")
print(result.stdout)
glb_path = ply_path.replace(".ply", ".glb")
return glb_path
def mesh_gen(tmp_dir, simplify, num_inference_steps):
# print(MESH_CMD.format(tmp_dir=tmp_dir, num_inference_steps=num_inference_steps))
os.system(MESH_CMD.format(tmp_dir=tmp_dir, num_inference_steps=num_inference_steps))
mesh = trimesh.load_mesh(f"{tmp_dir}/mesh.ply")
vertex_normals = mesh.vertex_normals
theta = np.radians(-90) # Rotation angle in radians
# Create rotation matrix
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
rotation_matrix = np.array([
[cos_theta, -sin_theta, 0],
[sin_theta, cos_theta, 0],
[0, 0, 1]
])
rotated_normal = np.dot(vertex_normals, rotation_matrix.T)
# rotated_normal = rotated_normal / np.linalg.norm(rotated_normal)
colors = (-rotated_normal + 1) / 2.0
# colors = (-vertex_normals + 1) / 2.0
colors = (colors * 255).clip(0, 255).astype(np.uint8) # Convert to 8-bit color
# print(colors.shape)
mesh.visual.vertex_colors = colors[..., [2, 1, 0]] # RGB -> BGR
mesh.export(f"{tmp_dir}/mesh_normal.ply", file_type="ply")
color_path = ply_to_glb(f"{tmp_dir}/mesh.ply")
normal_path = ply_to_glb(f"{tmp_dir}/mesh_normal.ply")
return color_path, normal_path
def create_tmp_dir():
tmp_dir = (
"demo_exp/"
+ datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
+ "_"
+ str(uuid.uuid4())[:4]
)
os.makedirs(tmp_dir, exist_ok=True)
print("create tmp_exp_dir", tmp_dir)
return tmp_dir
def vis_seg(checkbox):
if checkbox:
print("Show manual seg windows")
return (
[gr.Image(value=None, visible=True)] * 2
+ [gr.Radio(visible=True)]
+ [[], gr.Checkbox(visible=True)]
)
else:
print("Clear manual seg")
return (
[gr.Image(visible=False)] * 2
+ [gr.Radio(visible=False)]
+ [[], gr.Checkbox(visible=False)]
)
def calc_feat(checkbox, predictor, input_image, idx=None):
if checkbox:
if idx is not None:
print("image idx:", int(idx))
input_image = Image.open(input_image[int(idx)]["name"])
input_image.thumbnail([512, 512], Image.Resampling.LANCZOS)
w, h = input_image.size
print("image size:", w, h)
side_len = np.max((w, h))
seg_in = Image.new(input_image.mode, (side_len, side_len), (255, 255, 255))
seg_in.paste(
input_image, (np.max((0, (h - w) // 2)), np.max((0, (w - h) // 2)))
)
print("Calculating image SAM feature...")
predictor.set_image(np.array(seg_in.convert("RGB")))
torch.cuda.empty_cache()
return gr.Image(value=seg_in, visible=True)
else:
print("Quit manual seg")
raise ValueError("Quit manual seg")
def manual_seg(
predictor,
seg_in,
selected_points,
fg_bg_radio,
tmp_dir,
seg_mask_opt,
evt: gr.SelectData,
):
print("Start segmentation")
selected_points.append(
{"coord": evt.index, "add_del": fg_bg_radio == "+ (add mask)"}
)
input_points = np.array([point["coord"] for point in selected_points])
input_labels = np.array([point["add_del"] for point in selected_points])
out_image = sam_seg(
predictor, np.array(seg_in.convert("RGB")), input_points, input_labels
)
# seg_in.save(f"{tmp_dir}/in.png")
# out_image.save(f"{tmp_dir}/out.png")
if seg_mask_opt:
segmentation = blend_seg_pure(
seg_in.convert("RGB"), out_image, input_points, input_labels
)
else:
segmentation = blend_seg(
seg_in.convert("RGB"), out_image, input_points, input_labels
)
# recenter and rescale
image_arr = np.array(out_image)
ret, mask = cv2.threshold(
np.array(out_image.split()[-1]), 0, 255, cv2.THRESH_BINARY
)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
ratio = 0.75
side_len = int(max_size / ratio)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len // 2
padded_image[
center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w
] = image_arr[y : y + h, x : x + w]
rgba = Image.fromarray(padded_image)
rgba.save(f"{tmp_dir}/seg.png")
torch.cuda.empty_cache()
return segmentation.resize((380, 380), Image.Resampling.LANCZOS), rgba.resize(
(320, 320), Image.Resampling.LANCZOS
)
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200",
)
with gr.Blocks(title="MeshFormer Demo", css="style.css", theme=custom_theme) as demo:
with gr.Row():
gr.Markdown(
"# MeshFormer: High-Quality Mesh Generation with 3D-Guided Reconstruction Model"
)
with gr.Row():
gr.Markdown(
"[Project Page](https://meshformer3d.github.io/) | [arXiv](https://arxiv.org/pdf/2408.10198)"
)
with gr.Row():
gr.Markdown(
"""
<div>
<b><em>Check out <a href="https://www.sudo.ai/3dgen">Hillbot (sudoAI)</a> for more details and advanced features.</em></b>
</div>
"""
)
with gr.Row():
guide_text_i2m = gr.HTML(message("Please input an image!"), visible=True)
tmp_dir_img = gr.State("./demo_exp/placeholder")
tmp_dir_txt = gr.State("./demo_exp/placeholder")
tmp_dir_3t3 = gr.State("./demo_exp/placeholder")
example_folder = os.path.join(os.path.dirname(__file__), "demo_examples")
example_fns = os.listdir(example_folder)
example_fns.sort()
img_examples = [
os.path.join(example_folder, x) for x in example_fns
] # if x.endswith('.png') or x.endswith('.')
with gr.Row(variant="panel"):
with gr.Row():
with gr.Column(scale=8):
input_image = gr.Image(
type="pil",
image_mode="RGBA",
height=320,
label="Input Image",
interactive=True,
)
gr.Examples(
examples=img_examples,
inputs=[input_image],
outputs=[input_image],
cache_examples=False,
label="Image Examples (Click one of the images below to start)",
examples_per_page=27,
)
with gr.Accordion("Options", open=False):
img_simplify = gr.Checkbox(
False, label="simplify the generated mesh", visible=False
)
n_steps_img = gr.Slider(
value=28,
minimum=15,
maximum=100,
step=1,
label="number of inference steps",
)
# manual segmentation
checkbox_manual_seg = gr.Checkbox(False, label="manual segmentation")
with gr.Row():
with gr.Column(scale=1):
seg_in = gr.Image(
type="pil",
image_mode="RGBA",
label="Click to segment",
visible=False,
show_download_button=False,
height=380,
)
with gr.Column(scale=1):
seg_out = gr.Image(
type="pil",
image_mode="RGBA",
label="Segmentation",
interactive=False,
visible=False,
show_download_button=False,
height=380,
elem_id="disp_image",
)
fg_bg_radio = gr.Radio(
["+ (add mask)", "- (remove area)"],
value="+ (add mask)",
info="Select foreground (+) or background (-) point",
label="Point label",
visible=False,
interactive=True,
)
seg_mask_opt = gr.Checkbox(
True,
label="show foreground mask in manual segmentation",
visible=False,
)
# run
img_run_btn = gr.Button(
"Generate", variant="primary", interactive=False
)
with gr.Column(scale=6):
processed_image = gr.Image(
type="pil",
label="Processed Image",
interactive=False,
height=320,
image_mode="RGBA",
elem_id="disp_image",
)
# with gr.Row():
# mesh_output = gr.Model3D(label="Generated Mesh", elem_id="model-3d-out")
mesh_output_normal = Model3DColor(
label="Generated Mesh (normal)",
elem_id="mesh-normal-out",
height=400,
)
mesh_output = Model3DColor(
label="Generated Mesh (color)",
elem_id="mesh-out",
height=400,
)
predictor = gr.State(value=get_sam_predictor())
selected_points = gr.State(value=[])
selected_points_t2i = gr.State(value=[])
disable_checkbox = lambda: gr.Checkbox(value=False)
disable_button = lambda: gr.Button(interactive=False)
enable_button = lambda: gr.Button(interactive=True)
update_guide = lambda GUIDE_TEXT, icon_type="info": gr.HTML(
value=message(GUIDE_TEXT, icon_type)
)
update_md = lambda GUIDE_TEXT: gr.Markdown(value=GUIDE_TEXT)
def is_img_clear(input_image):
if not input_image:
raise ValueError("Input image cleared.")
checkbox_manual_seg.change(
vis_seg,
inputs=[checkbox_manual_seg],
outputs=[seg_in, seg_out, fg_bg_radio, selected_points, seg_mask_opt],
queue=False,
).success(
calc_feat,
inputs=[checkbox_manual_seg, predictor, input_image],
outputs=[seg_in],
queue=True,
).success(
fn=create_tmp_dir, outputs=[tmp_dir_img], queue=False
)
seg_in.select(
manual_seg,
[predictor, seg_in, selected_points, fg_bg_radio, tmp_dir_img, seg_mask_opt],
[seg_out, processed_image],
queue=True,
)
input_image.change(disable_button, outputs=img_run_btn, queue=False).success(
disable_checkbox, outputs=checkbox_manual_seg, queue=False
).success(fn=is_img_clear, inputs=input_image, queue=False).success(
fn=create_tmp_dir, outputs=tmp_dir_img, queue=False
).success(
fn=partial(update_guide, "Preprocessing the image!", "wait"),
outputs=[guide_text_i2m],
queue=False,
).success(
fn=preprocess,
inputs=[tmp_dir_img, input_image],
outputs=[processed_image],
queue=True,
).success(
fn=partial(
update_guide,
"Click <b>Generate</b> to generate mesh! If the input image was not segmented accurately, please adjust it using <b>manual segmentation</b>.",
"cursor",
),
outputs=[guide_text_i2m],
queue=False,
).success(
enable_button, outputs=img_run_btn, queue=False
)
img_run_btn.click(
fn=partial(update_guide, "Generating the mesh!", "wait"),
outputs=[guide_text_i2m],
queue=False,
).success(
fn=mesh_gen,
inputs=[tmp_dir_img, img_simplify, n_steps_img],
outputs=[mesh_output, mesh_output_normal],
queue=True,
).success(
fn=partial(
update_guide,
"Successfully generated the mesh. (It might take a few seconds to load the mesh)",
"done",
),
outputs=[guide_text_i2m],
queue=False,
)
demo.queue().launch(
debug=False, share=False, inline=False, show_api=False, server_name="0.0.0.0"
)