File size: 2,690 Bytes
153b6f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2eeccd1
153b6f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636d8c
153b6f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python
# coding: utf-8

# In[20]:


import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder,StandardScaler
from sklearn.pipeline import Pipeline


# In[21]:


df=pd.read_excel('cars.xls')
df.head()


# In[22]:


#pip install xlrd


# In[23]:


X=df.drop('Price', axis=1)
y=df['Price']


# In[24]:


X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)


# In[25]:


#!pip install ydata-profiling


# In[26]:


#import ydata_profiling


# In[27]:


#df.profile_report()


# In[28]:


preprocess=ColumnTransformer(transformers=[
    ('num',StandardScaler(),['Mileage','Cylinder','Liter','Doors']),
    ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])


# Veri önişlemedeki standartlaşma ve one-hot kodlama işlemlerini otomatikleştiriyoruz. 
# Artık preprocess kullanarak kullanıcıdan gelen veriyi modelimize uygun girdi haline dçnüştürebiliriz. 

# In[31]:


model=LinearRegression()
pipe=Pipeline(steps=[('preprocesor', preprocess), ('model', model)])


# In[32]:


pipe.fit(X_train, y_train)


# In[33]:


y_pred=pipe.predict(X_test)
mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)


# In[ ]:


import streamlit as st
def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
	input_data=pd.DataFrame({
		'Make':[make],
		'Model':[model],
		'Trim':[trim],
		'Mileage':[mileage],
		'Type':[car_type],
		'Car_type':[car_type],
		'Cylinder':[cylinder],
		'Liter':[liter],
		'Doors':[doors],
		'Cruise':[cruise],
		'Sound':[sound],
		'Leather':[leather]
		})
	prediction=pipe.predict(input_data)[0]
	return prediction
st.title("Car Price Prediction :red_car: ")
st.write("Enter Car Details to predict the price of the car")
make=st.selectbox("Make",df['Make'].unique())
model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
mileage=st.number_input("Mileage",200,60000)
car_type=st.selectbox("Type",df['Type'].unique())
cylinder=st.selectbox("Cylinder",df['Cylinder'].unique())
liter=st.number_input("Liter",1,6)
doors=st.selectbox("Doors",df['Doors'].unique())
cruise=st.radio("Cruise",[True,False])
sound=st.radio("Sound",[True,False])
leather=st.radio("Leather",[True,False])
if st.button("Predict"):
	pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)

	st.write("Predicted Price :red_car:  $",round(pred[0],2))


# In[ ]: