carpredict / app.py
sylaork's picture
Update app.py
2636d8c verified
#!/usr/bin/env python
# coding: utf-8
# In[20]:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder,StandardScaler
from sklearn.pipeline import Pipeline
# In[21]:
df=pd.read_excel('cars.xls')
df.head()
# In[22]:
#pip install xlrd
# In[23]:
X=df.drop('Price', axis=1)
y=df['Price']
# In[24]:
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
# In[25]:
#!pip install ydata-profiling
# In[26]:
#import ydata_profiling
# In[27]:
#df.profile_report()
# In[28]:
preprocess=ColumnTransformer(transformers=[
('num',StandardScaler(),['Mileage','Cylinder','Liter','Doors']),
('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
# Veri önişlemedeki standartlaşma ve one-hot kodlama işlemlerini otomatikleştiriyoruz.
# Artık preprocess kullanarak kullanıcıdan gelen veriyi modelimize uygun girdi haline dçnüştürebiliriz.
# In[31]:
model=LinearRegression()
pipe=Pipeline(steps=[('preprocesor', preprocess), ('model', model)])
# In[32]:
pipe.fit(X_train, y_train)
# In[33]:
y_pred=pipe.predict(X_test)
mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
# In[ ]:
import streamlit as st
def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
input_data=pd.DataFrame({
'Make':[make],
'Model':[model],
'Trim':[trim],
'Mileage':[mileage],
'Type':[car_type],
'Car_type':[car_type],
'Cylinder':[cylinder],
'Liter':[liter],
'Doors':[doors],
'Cruise':[cruise],
'Sound':[sound],
'Leather':[leather]
})
prediction=pipe.predict(input_data)[0]
return prediction
st.title("Car Price Prediction :red_car: ")
st.write("Enter Car Details to predict the price of the car")
make=st.selectbox("Make",df['Make'].unique())
model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
mileage=st.number_input("Mileage",200,60000)
car_type=st.selectbox("Type",df['Type'].unique())
cylinder=st.selectbox("Cylinder",df['Cylinder'].unique())
liter=st.number_input("Liter",1,6)
doors=st.selectbox("Doors",df['Doors'].unique())
cruise=st.radio("Cruise",[True,False])
sound=st.radio("Sound",[True,False])
leather=st.radio("Leather",[True,False])
if st.button("Predict"):
pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
st.write("Predicted Price :red_car: $",round(pred[0],2))
# In[ ]: