Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[20]: | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import mean_squared_error, r2_score | |
from sklearn.compose import ColumnTransformer | |
from sklearn.preprocessing import OneHotEncoder,StandardScaler | |
from sklearn.pipeline import Pipeline | |
# In[21]: | |
df=pd.read_excel('cars.xls') | |
df.head() | |
# In[22]: | |
#pip install xlrd | |
# In[23]: | |
X=df.drop('Price', axis=1) | |
y=df['Price'] | |
# In[24]: | |
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42) | |
# In[25]: | |
#!pip install ydata-profiling | |
# In[26]: | |
#import ydata_profiling | |
# In[27]: | |
#df.profile_report() | |
# In[28]: | |
preprocess=ColumnTransformer(transformers=[ | |
('num',StandardScaler(),['Mileage','Cylinder','Liter','Doors']), | |
('cat',OneHotEncoder(),['Make','Model','Trim','Type'])]) | |
# Veri önişlemedeki standartlaşma ve one-hot kodlama işlemlerini otomatikleştiriyoruz. | |
# Artık preprocess kullanarak kullanıcıdan gelen veriyi modelimize uygun girdi haline dçnüştürebiliriz. | |
# In[31]: | |
model=LinearRegression() | |
pipe=Pipeline(steps=[('preprocesor', preprocess), ('model', model)]) | |
# In[32]: | |
pipe.fit(X_train, y_train) | |
# In[33]: | |
y_pred=pipe.predict(X_test) | |
mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred) | |
# In[ ]: | |
import streamlit as st | |
def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather): | |
input_data=pd.DataFrame({ | |
'Make':[make], | |
'Model':[model], | |
'Trim':[trim], | |
'Mileage':[mileage], | |
'Type':[car_type], | |
'Car_type':[car_type], | |
'Cylinder':[cylinder], | |
'Liter':[liter], | |
'Doors':[doors], | |
'Cruise':[cruise], | |
'Sound':[sound], | |
'Leather':[leather] | |
}) | |
prediction=pipe.predict(input_data)[0] | |
return prediction | |
st.title("Car Price Prediction :red_car: ") | |
st.write("Enter Car Details to predict the price of the car") | |
make=st.selectbox("Make",df['Make'].unique()) | |
model=st.selectbox("Model",df[df['Make']==make]['Model'].unique()) | |
trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique()) | |
mileage=st.number_input("Mileage",200,60000) | |
car_type=st.selectbox("Type",df['Type'].unique()) | |
cylinder=st.selectbox("Cylinder",df['Cylinder'].unique()) | |
liter=st.number_input("Liter",1,6) | |
doors=st.selectbox("Doors",df['Doors'].unique()) | |
cruise=st.radio("Cruise",[True,False]) | |
sound=st.radio("Sound",[True,False]) | |
leather=st.radio("Leather",[True,False]) | |
if st.button("Predict"): | |
pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather) | |
st.write("Predicted Price :red_car: $",round(pred[0],2)) | |
# In[ ]: | |