Spaces:
Running
Running
# https://github.com/fatheral/matlab_imresize | |
# | |
# MIT License | |
# | |
# Copyright (c) 2020 Alex | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
from __future__ import print_function | |
import numpy as np | |
from math import ceil, floor | |
def deriveSizeFromScale(img_shape, scale): | |
output_shape = [] | |
for k in range(2): | |
output_shape.append(int(ceil(scale[k] * img_shape[k]))) | |
return output_shape | |
def deriveScaleFromSize(img_shape_in, img_shape_out): | |
scale = [] | |
for k in range(2): | |
scale.append(1.0 * img_shape_out[k] / img_shape_in[k]) | |
return scale | |
def triangle(x): | |
x = np.array(x).astype(np.float64) | |
lessthanzero = np.logical_and((x >= -1), x < 0) | |
greaterthanzero = np.logical_and((x <= 1), x >= 0) | |
f = np.multiply((x + 1), lessthanzero) + np.multiply((1 - x), greaterthanzero) | |
return f | |
def cubic(x): | |
x = np.array(x).astype(np.float64) | |
absx = np.absolute(x) | |
absx2 = np.multiply(absx, absx) | |
absx3 = np.multiply(absx2, absx) | |
f = np.multiply(1.5 * absx3 - 2.5 * absx2 + 1, absx <= 1) + np.multiply(-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2, | |
(1 < absx) & (absx <= 2)) | |
return f | |
def contributions(in_length, out_length, scale, kernel, k_width): | |
if scale < 1: | |
h = lambda x: scale * kernel(scale * x) | |
kernel_width = 1.0 * k_width / scale | |
else: | |
h = kernel | |
kernel_width = k_width | |
x = np.arange(1, out_length + 1).astype(np.float64) | |
u = x / scale + 0.5 * (1 - 1 / scale) | |
left = np.floor(u - kernel_width / 2) | |
P = int(ceil(kernel_width)) + 2 | |
ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0 | |
indices = ind.astype(np.int32) | |
weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0 | |
weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1)) | |
aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32) | |
indices = aux[np.mod(indices, aux.size)] | |
ind2store = np.nonzero(np.any(weights, axis=0)) | |
weights = weights[:, ind2store] | |
indices = indices[:, ind2store] | |
return weights, indices | |
def imresizemex(inimg, weights, indices, dim): | |
in_shape = inimg.shape | |
w_shape = weights.shape | |
out_shape = list(in_shape) | |
out_shape[dim] = w_shape[0] | |
outimg = np.zeros(out_shape) | |
if dim == 0: | |
for i_img in range(in_shape[1]): | |
for i_w in range(w_shape[0]): | |
w = weights[i_w, :] | |
ind = indices[i_w, :] | |
im_slice = inimg[ind, i_img].astype(np.float64) | |
outimg[i_w, i_img] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0) | |
elif dim == 1: | |
for i_img in range(in_shape[0]): | |
for i_w in range(w_shape[0]): | |
w = weights[i_w, :] | |
ind = indices[i_w, :] | |
im_slice = inimg[i_img, ind].astype(np.float64) | |
outimg[i_img, i_w] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0) | |
if inimg.dtype == np.uint8: | |
outimg = np.clip(outimg, 0, 255) | |
return np.around(outimg).astype(np.uint8) | |
else: | |
return outimg | |
def imresizevec(inimg, weights, indices, dim): | |
wshape = weights.shape | |
if dim == 0: | |
weights = weights.reshape((wshape[0], wshape[2], 1, 1)) | |
outimg = np.sum(weights * ((inimg[indices].squeeze(axis=1)).astype(np.float64)), axis=1) | |
elif dim == 1: | |
weights = weights.reshape((1, wshape[0], wshape[2], 1)) | |
outimg = np.sum(weights * ((inimg[:, indices].squeeze(axis=2)).astype(np.float64)), axis=2) | |
if inimg.dtype == np.uint8: | |
outimg = np.clip(outimg, 0, 255) | |
return np.around(outimg).astype(np.uint8) | |
else: | |
return outimg | |
def resizeAlongDim(A, dim, weights, indices, mode="vec"): | |
if mode == "org": | |
out = imresizemex(A, weights, indices, dim) | |
else: | |
out = imresizevec(A, weights, indices, dim) | |
return out | |
def imresize(I, scalar_scale=None, method='bicubic', output_shape=None, mode="vec"): | |
if method is 'bicubic': | |
kernel = cubic | |
elif method is 'bilinear': | |
kernel = triangle | |
else: | |
print('Error: Unidentified method supplied') | |
kernel_width = 4.0 | |
# Fill scale and output_size | |
if scalar_scale is not None: | |
scalar_scale = float(scalar_scale) | |
scale = [scalar_scale, scalar_scale] | |
output_size = deriveSizeFromScale(I.shape, scale) | |
elif output_shape is not None: | |
scale = deriveScaleFromSize(I.shape, output_shape) | |
output_size = list(output_shape) | |
else: | |
print('Error: scalar_scale OR output_shape should be defined!') | |
return | |
scale_np = np.array(scale) | |
order = np.argsort(scale_np) | |
weights = [] | |
indices = [] | |
for k in range(2): | |
w, ind = contributions(I.shape[k], output_size[k], scale[k], kernel, kernel_width) | |
weights.append(w) | |
indices.append(ind) | |
B = np.copy(I) | |
flag2D = False | |
if B.ndim == 2: | |
B = np.expand_dims(B, axis=2) | |
flag2D = True | |
for k in range(2): | |
dim = order[k] | |
B = resizeAlongDim(B, dim, weights[dim], indices[dim], mode) | |
if flag2D: | |
B = np.squeeze(B, axis=2) | |
return B | |
def convertDouble2Byte(I): | |
B = np.clip(I, 0.0, 1.0) | |
B = 255 * B | |
return np.around(B).astype(np.uint8) |