Spaces:
Running
Running
# Copyright (c) 2020 Huawei Technologies Co., Ltd. | |
# Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode | |
# | |
# The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd. | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE | |
import glob | |
import sys | |
from collections import OrderedDict | |
from natsort import natsort | |
import options.options as option | |
from Measure import Measure, psnr | |
from imresize import imresize | |
from models import create_model | |
import torch | |
from utils.util import opt_get | |
import numpy as np | |
import pandas as pd | |
import os | |
import cv2 | |
def fiFindByWildcard(wildcard): | |
return natsort.natsorted(glob.glob(wildcard, recursive=True)) | |
def load_model(conf_path): | |
opt = option.parse(conf_path, is_train=False) | |
opt['gpu_ids'] = None | |
opt = option.dict_to_nonedict(opt) | |
model = create_model(opt) | |
model_path = opt_get(opt, ['model_path'], None) | |
model.load_network(load_path=model_path, network=model.netG) | |
return model, opt | |
def predict(model, lr): | |
model.feed_data({"LQ": t(lr)}, need_GT=False) | |
model.test() | |
visuals = model.get_current_visuals(need_GT=False) | |
return visuals.get('rlt', visuals.get("SR")) | |
def t(array): return torch.Tensor(np.expand_dims(array.transpose([2, 0, 1]), axis=0).astype(np.float32)) / 255 | |
def rgb(t): return ( | |
np.clip((t[0] if len(t.shape) == 4 else t).detach().cpu().numpy().transpose([1, 2, 0]), 0, 1) * 255).astype( | |
np.uint8) | |
def imread(path): | |
return cv2.imread(path)[:, :, [2, 1, 0]] | |
def imwrite(path, img): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
cv2.imwrite(path, img[:, :, [2, 1, 0]]) | |
def imCropCenter(img, size): | |
h, w, c = img.shape | |
h_start = max(h // 2 - size // 2, 0) | |
h_end = min(h_start + size, h) | |
w_start = max(w // 2 - size // 2, 0) | |
w_end = min(w_start + size, w) | |
return img[h_start:h_end, w_start:w_end] | |
def impad(img, top=0, bottom=0, left=0, right=0, color=255): | |
return np.pad(img, [(top, bottom), (left, right), (0, 0)], 'reflect') | |
def main(): | |
conf_path = sys.argv[1] | |
conf = conf_path.split('/')[-1].replace('.yml', '') | |
model, opt = load_model(conf_path) | |
data_dir = opt['dataroot'] | |
# this_dir = os.path.dirname(os.path.realpath(__file__)) | |
test_dir = os.path.join('/kaggle/working/', 'results', conf) | |
print(f"Out dir: {test_dir}") | |
measure = Measure(use_gpu=False) | |
fname = f'measure_full.csv' | |
fname_tmp = fname + "_" | |
path_out_measures = os.path.join(test_dir, fname_tmp) | |
path_out_measures_final = os.path.join(test_dir, fname) | |
if os.path.isfile(path_out_measures_final): | |
df = pd.read_csv(path_out_measures_final) | |
elif os.path.isfile(path_out_measures): | |
df = pd.read_csv(path_out_measures) | |
else: | |
df = None | |
scale = opt['scale'] | |
pad_factor = 2 | |
data_sets = [ | |
'Set5', | |
'Set14', | |
'Urban100', | |
'BSD100' | |
] | |
final_df = pd.DataFrame() | |
for data_set in data_sets: | |
lr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*LR.png')) | |
hr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*HR.png')) | |
df = pd.DataFrame(columns=['conf', 'heat', 'data_set', 'name', 'PSNR', 'SSIM', 'LPIPS', 'LRC PSNR']) | |
for lr_path, hr_path, idx_test in zip(lr_paths, hr_paths, range(len(lr_paths))): | |
with torch.no_grad(), torch.cuda.amp.autocast(): | |
lr = imread(lr_path) | |
hr = imread(hr_path) | |
# Pad image to be % 2 | |
h, w, c = lr.shape | |
lq_orig = lr.copy() | |
lr = impad(lr, bottom=int(np.ceil(h / pad_factor) * pad_factor - h), | |
right=int(np.ceil(w / pad_factor) * pad_factor - w)) | |
lr_t = t(lr) | |
heat = opt['heat'] | |
if df is not None and len(df[(df['heat'] == heat) & (df['name'] == idx_test)]) == 1: | |
continue | |
sr_t = model.get_sr(lq=lr_t, heat=heat) | |
sr = rgb(torch.clamp(sr_t, 0, 1)) | |
sr = sr[:h * scale, :w * scale] | |
path_out_sr = os.path.join(test_dir, data_set, "{:0.2f}".format(heat).replace('.', ''), "{:06d}.png".format(idx_test)) | |
imwrite(path_out_sr, sr) | |
meas = OrderedDict(conf=conf, heat=heat, data_set=data_set, name=idx_test) | |
meas['PSNR'], meas['SSIM'], meas['LPIPS'] = measure.measure(sr, hr) | |
lr_reconstruct_rgb = imresize(sr, 1 / opt['scale']) | |
meas['LRC PSNR'] = psnr(lq_orig, lr_reconstruct_rgb) | |
str_out = format_measurements(meas) | |
print(str_out) | |
df = df._append(pd.DataFrame([meas]), ignore_index=True) | |
final_df = pd.concat([final_df, df]) | |
final_df.to_csv(path_out_measures, index=False) | |
os.rename(path_out_measures, path_out_measures_final) | |
# str_out = format_measurements(df.mean()) | |
# print(f"Results in: {path_out_measures_final}") | |
# print('Mean: ' + str_out) | |
def format_measurements(meas): | |
s_out = [] | |
for k, v in meas.items(): | |
v = f"{v:0.2f}" if isinstance(v, float) else v | |
s_out.append(f"{k}: {v}") | |
str_out = ", ".join(s_out) | |
return str_out | |
if __name__ == "__main__": | |
main() | |