Spaces:
Running
Running
import time | |
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
from io import BytesIO | |
from models.HAT.hat import * | |
from models.RCAN.rcan import * | |
# Initialize session state for enhanced images | |
if 'hat_enhanced_image' not in st.session_state: | |
st.session_state['hat_enhanced_image'] = None | |
if 'rcan_enhanced_image' not in st.session_state: | |
st.session_state['rcan_enhanced_image'] = None | |
if 'hat_clicked' not in st.session_state: | |
st.session_state['hat_clicked'] = False | |
if 'rcan_clicked' not in st.session_state: | |
st.session_state['rcan_clicked'] = False | |
st.markdown("<h1 style='text-align: center'>Image Super Resolution</h1>", unsafe_allow_html=True) | |
# Sidebar for navigation | |
st.sidebar.title("Options") | |
app_mode = st.sidebar.selectbox("Choose the input source", | |
["Upload image", "Take a photo"]) | |
# Depending on the choice, show the uploader widget or webcam capture | |
if app_mode == "Upload image": | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"], on_change=lambda: reset_states()) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file).convert("RGB") | |
elif app_mode == "Take a photo": | |
# Using JS code to access user's webcam | |
camera_input = st.camera_input("Take a picture", on_change=lambda: reset_states()) | |
if camera_input is not None: | |
# Convert the camera image to an RGB image | |
image = Image.open(camera_input).convert("RGB") | |
def reset_states(): | |
st.session_state['hat_enhanced_image'] = None | |
st.session_state['rcan_enhanced_image'] = None | |
st.session_state['hat_clicked'] = False | |
st.session_state['rcan_clicked'] = False | |
def get_image_download_link(img, filename): | |
"""Generates a link allowing the PIL image to be downloaded""" | |
# Convert the PIL image to Bytes | |
buffered = BytesIO() | |
img.save(buffered, format="PNG") | |
return st.download_button( | |
label="Download Image", | |
data=buffered.getvalue(), | |
file_name=filename, | |
mime="image/png" | |
) | |
if 'image' in locals(): | |
# st.image(image, caption='Uploaded Image', use_column_width=True) | |
st.write("") | |
# ------------------------ HAT ------------------------ # | |
if st.button('Enhance with HAT'): | |
with st.spinner('Processing using HAT...'): | |
with st.spinner('Wait for it... the model is processing the image'): | |
enhanced_image = HAT_for_deployment(image) | |
st.session_state['hat_enhanced_image'] = enhanced_image | |
st.session_state['hat_clicked'] = True | |
st.success('Done!') | |
if st.session_state['hat_enhanced_image'] is not None: | |
col1, col2 = st.columns(2) | |
col1.header("Original") | |
col1.image(image, use_column_width=True) | |
col2.header("Enhanced") | |
col2.image(st.session_state['hat_enhanced_image'], use_column_width=True) | |
with col2: | |
get_image_download_link(st.session_state['hat_enhanced_image'], 'hat_enhanced.jpg') | |
# ------------------------ RCAN ------------------------ # | |
if st.button('Enhance with RCAN'): | |
with st.spinner('Processing using RCAN...'): | |
with st.spinner('Wait for it... the model is processing the image'): | |
rcan_model = RCAN() | |
device = torch.device('cpu') if not torch.cuda.is_available() else torch.device('cuda') | |
rcan_model.load_state_dict(torch.load('models/RCAN/rcan_checkpoint.pth', map_location=device)) | |
enhanced_image = rcan_model.inference(image) | |
st.session_state['rcan_enhanced_image'] = enhanced_image | |
st.session_state['rcan_clicked'] = True | |
st.success('Done!') | |
if st.session_state['rcan_enhanced_image'] is not None: | |
col1, col2 = st.columns(2) | |
col1.header("Original") | |
col1.image(image, use_column_width=True) | |
col2.header("Enhanced") | |
col2.image(st.session_state['rcan_enhanced_image'], use_column_width=True) | |
with col2: | |
get_image_download_link(st.session_state['rcan_enhanced_image'], 'rcan_enhanced.jpg') | |