hail75's picture
add SRFlow with srflow.py
42d27cc
raw
history blame
14.4 kB
# Copyright (c) 2020 Huawei Technologies Co., Ltd.
# Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
#
# The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
import os
from os.path import basename
import math
import argparse
import random
import logging
import cv2
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import options.options as option
from utils import util
from data import create_dataloader, create_dataset
from models import create_model
from utils.timer import Timer, TickTock
from utils.util import get_resume_paths
import wandb
def getEnv(name): import os; return True if name in os.environ.keys() else False
def init_dist(backend='nccl', **kwargs):
''' initialization for distributed training'''
# if mp.get_start_method(allow_none=True) is None:
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn')
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
torch.cuda.set_deviceDistIterSampler(rank % num_gpus)
dist.init_process_group(backend=backend, **kwargs)
def main():
wandb.init(project='srflow')
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YMAL file.')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
#### distributed training settings
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
#### loading resume state if exists
if opt['path'].get('resume_state', None):
resume_state_path, _ = get_resume_paths(opt)
# distributed resuming: all load into default GPU
if resume_state_path is None:
resume_state = None
else:
device_id = torch.cuda.current_device()
resume_state = torch.load(resume_state_path,
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
#### mkdir and loggers
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
if resume_state is None:
util.mkdir_and_rename(
opt['path']['experiments_root']) # rename experiment folder if exists
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# tensorboard logger
if opt.get('use_tb_logger', False) and 'debug' not in opt['name']:
version = float(torch.__version__[0:3])
if version >= 1.1: # PyTorch 1.1
from torch.utils.tensorboard import SummaryWriter
else:
logger.info(
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
from tensorboardX import SummaryWriter
conf_name = basename(args.opt).replace(".yml", "")
exp_dir = opt['path']['experiments_root']
log_dir_train = os.path.join(exp_dir, 'tb', conf_name, 'train')
log_dir_valid = os.path.join(exp_dir, 'tb', conf_name, 'valid')
tb_logger_train = SummaryWriter(log_dir=log_dir_train)
tb_logger_valid = SummaryWriter(log_dir=log_dir_valid)
else:
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
#### random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0:
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
#### create train and val dataloader
dataset_ratio = 200 # enlarge the size of each epoch
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
full_dataset = create_dataset(dataset_opt)
print('Dataset created')
train_len = int(len(full_dataset) * 0.95)
val_len = len(full_dataset) - train_len
train_set, val_set = torch.utils.data.random_split(full_dataset, [train_len, val_len])
train_size = int(math.ceil(train_len / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
train_sampler = None
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
if rank <= 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(train_set), train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
total_epochs, total_iters))
val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=1,
pin_memory=True)
elif phase == 'val':
continue
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert train_loader is not None
#### create model
current_step = 0 if resume_state is None else resume_state['iter']
model = create_model(opt, current_step)
#### resume training
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
model.resume_training(resume_state) # handle optimizers and schedulers
else:
current_step = 0
start_epoch = 0
#### training
timer = Timer()
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
timerData = TickTock()
for epoch in range(start_epoch, total_epochs + 1):
if opt['dist']:
train_sampler.set_epoch(epoch)
timerData.tick()
for _, train_data in enumerate(train_loader):
timerData.tock()
current_step += 1
if current_step > total_iters:
break
#### training
model.feed_data(train_data)
#### update learning rate
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
try:
nll = model.optimize_parameters(current_step)
except RuntimeError as e:
print("Skipping ERROR caught in nll = model.optimize_parameters(current_step): ")
print(e)
if nll is None:
nll = 0
wandb.log({"loss": nll})
#### log
def eta(t_iter):
return (t_iter * (opt['train']['niter'] - current_step)) / 3600
if current_step % opt['logger']['print_freq'] == 0 \
or current_step - (resume_state['iter'] if resume_state else 0) < 25:
avg_time = timer.get_average_and_reset()
avg_data_time = timerData.get_average_and_reset()
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}, t:{:.2e}, td:{:.2e}, eta:{:.2e}, nll:{:.3e}> '.format(
epoch, current_step, model.get_current_learning_rate(), avg_time, avg_data_time,
eta(avg_time), nll)
print(message)
timer.tick()
# Reduce number of logs
if current_step % 5 == 0:
tb_logger_train.add_scalar('loss/nll', nll, current_step)
tb_logger_train.add_scalar('lr/base', model.get_current_learning_rate(), current_step)
tb_logger_train.add_scalar('time/iteration', timer.get_last_iteration(), current_step)
tb_logger_train.add_scalar('time/data', timerData.get_last_iteration(), current_step)
tb_logger_train.add_scalar('time/eta', eta(timer.get_last_iteration()), current_step)
for k, v in model.get_current_log().items():
tb_logger_train.add_scalar(k, v, current_step)
# validation
if current_step % opt['train']['val_freq'] == 0 and rank <= 0:
avg_psnr = 0.0
idx = 0
nlls = []
for val_data in val_loader:
idx += 1
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][0]))[0]
img_dir = os.path.join(opt['path']['val_images'], img_name)
util.mkdir(img_dir)
model.feed_data(val_data)
nll = model.test()
if nll is None:
nll = 0
nlls.append(nll)
visuals = model.get_current_visuals()
sr_img = None
# Save SR images for reference
if hasattr(model, 'heats'):
for heat in model.heats:
for i in range(model.n_sample):
sr_img = util.tensor2img(visuals['SR', heat, i]) # uint8
save_img_path = os.path.join(img_dir,
'{:s}_{:09d}_h{:03d}_s{:d}.png'.format(img_name,
current_step,
int(heat * 100), i))
util.save_img(sr_img, save_img_path)
else:
sr_img = util.tensor2img(visuals['SR']) # uint8
save_img_path = os.path.join(img_dir,
'{:s}_{:d}.png'.format(img_name, current_step))
util.save_img(sr_img, save_img_path)
assert sr_img is not None
# Save LQ images for reference
save_img_path_lq = os.path.join(img_dir,
'{:s}_LQ.png'.format(img_name))
if not os.path.isfile(save_img_path_lq):
lq_img = util.tensor2img(visuals['LQ']) # uint8
util.save_img(
cv2.resize(lq_img, dsize=None, fx=opt['scale'], fy=opt['scale'],
interpolation=cv2.INTER_NEAREST),
save_img_path_lq)
# Save GT images for reference
gt_img = util.tensor2img(visuals['GT']) # uint8
save_img_path_gt = os.path.join(img_dir,
'{:s}_GT.png'.format(img_name))
if not os.path.isfile(save_img_path_gt):
util.save_img(gt_img, save_img_path_gt)
# calculate PSNR
crop_size = opt['scale']
gt_img = gt_img / 255.
sr_img = sr_img / 255.
cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :]
cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :]
avg_psnr += util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)
avg_psnr = avg_psnr / idx
avg_nll = sum(nlls) / len(nlls)
# log
logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr))
logger_val = logging.getLogger('val') # validation logger
logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e}'.format(
epoch, current_step, avg_psnr))
# tensorboard logger
tb_logger_valid.add_scalar('loss/psnr', avg_psnr, current_step)
tb_logger_valid.add_scalar('loss/nll', avg_nll, current_step)
tb_logger_train.flush()
tb_logger_valid.flush()
#### save models and training states
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
if rank <= 0:
logger.info('Saving models and training states.')
model.save(current_step)
model.save_training_state(epoch, current_step)
timerData.tick()
with open(os.path.join(opt['path']['root'], "TRAIN_DONE"), 'w') as f:
f.write("TRAIN_DONE")
if rank <= 0:
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
if __name__ == '__main__':
main()