Spaces:
Running
on
Zero
Running
on
Zero
tokenid
commited on
Commit
·
fc6f56d
1
Parent(s):
146da98
add random seed
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ import torch
|
|
11 |
from torchvision import transforms
|
12 |
import rembg
|
13 |
import cv2
|
|
|
14 |
|
15 |
from src.visualizer import CameraVisualizer
|
16 |
from src.pose_estimation import load_model_from_config, estimate_poses, estimate_elevs
|
@@ -113,7 +114,9 @@ def group_recenter(images, ratio=1.5, mask_thres=127, bkg_color=[255, 255, 255,
|
|
113 |
return out_rgbs
|
114 |
|
115 |
|
116 |
-
def run_preprocess(image1, image2, preprocess_chk):
|
|
|
|
|
117 |
|
118 |
if preprocess_chk:
|
119 |
rembg_session = rembg.new_session()
|
@@ -138,7 +141,9 @@ def image_to_tensor(img, width=256, height=256):
|
|
138 |
|
139 |
|
140 |
@spaces.GPU
|
141 |
-
def run_pose_exploration_a(
|
|
|
|
|
142 |
|
143 |
image1 = image_to_tensor(image1).to(_device_)
|
144 |
image2 = image_to_tensor(image2).to(_device_)
|
@@ -157,7 +162,9 @@ def run_pose_exploration_a(cam_vis, image1, image2):
|
|
157 |
|
158 |
|
159 |
@spaces.GPU
|
160 |
-
def run_pose_exploration_b(cam_vis, image1, image2, elevs, elev_ranges, probe_bsz, adj_bsz, adj_iters):
|
|
|
|
|
161 |
|
162 |
noise = np.random.randn(probe_bsz, 4, 32, 32)
|
163 |
|
@@ -206,7 +213,9 @@ def run_pose_exploration_b(cam_vis, image1, image2, elevs, elev_ranges, probe_bs
|
|
206 |
|
207 |
|
208 |
@spaces.GPU
|
209 |
-
def run_pose_refinement(cam_vis, image1, image2, anchor_polar, explored_sph, refine_iters):
|
|
|
|
|
210 |
|
211 |
cam_vis.set_images([np.asarray(image1, dtype=np.uint8), np.asarray(image2, dtype=np.uint8)])
|
212 |
|
@@ -295,7 +304,8 @@ def run_demo():
|
|
295 |
with gr.Accordion('Advanced options', open=False):
|
296 |
probe_bsz = gr.Slider(4, 32, value=16, step=4, label='Probe Batch Size')
|
297 |
adj_bsz = gr.Slider(1, 8, value=4, step=1, label='Adjust Batch Size')
|
298 |
-
adj_iters = gr.Slider(1, 20, value=
|
|
|
299 |
|
300 |
with gr.Row():
|
301 |
run_btn = gr.Button('Estimate', variant='primary', interactive=True)
|
@@ -369,21 +379,21 @@ def run_demo():
|
|
369 |
|
370 |
run_btn.click(
|
371 |
fn=run_preprocess,
|
372 |
-
inputs=[input_image1, input_image2, preprocess_chk],
|
373 |
outputs=[processed_image1, processed_image2],
|
374 |
).success(
|
375 |
-
fn=
|
376 |
-
inputs=[processed_image1, processed_image2],
|
377 |
outputs=[elevs, elev_ranges, vis_output]
|
378 |
).success(
|
379 |
fn=partial(run_pose_exploration_b, cam_vis),
|
380 |
-
inputs=[processed_image1, processed_image2, elevs, elev_ranges, probe_bsz, adj_bsz, adj_iters],
|
381 |
outputs=[anchor_polar, explored_sph, vis_output, refine_btn]
|
382 |
)
|
383 |
|
384 |
refine_btn.click(
|
385 |
fn=partial(run_pose_refinement, cam_vis),
|
386 |
-
inputs=[processed_image1, processed_image2, anchor_polar, explored_sph, refine_iters],
|
387 |
outputs=[refined_sph, vis_output]
|
388 |
)
|
389 |
|
|
|
11 |
from torchvision import transforms
|
12 |
import rembg
|
13 |
import cv2
|
14 |
+
from pytorch_lightning import seed_everything
|
15 |
|
16 |
from src.visualizer import CameraVisualizer
|
17 |
from src.pose_estimation import load_model_from_config, estimate_poses, estimate_elevs
|
|
|
114 |
return out_rgbs
|
115 |
|
116 |
|
117 |
+
def run_preprocess(image1, image2, preprocess_chk, seed_value):
|
118 |
+
|
119 |
+
seed_everything(seed_value)
|
120 |
|
121 |
if preprocess_chk:
|
122 |
rembg_session = rembg.new_session()
|
|
|
141 |
|
142 |
|
143 |
@spaces.GPU
|
144 |
+
def run_pose_exploration_a(image1, image2, seed_value):
|
145 |
+
|
146 |
+
seed_everything(seed_value)
|
147 |
|
148 |
image1 = image_to_tensor(image1).to(_device_)
|
149 |
image2 = image_to_tensor(image2).to(_device_)
|
|
|
162 |
|
163 |
|
164 |
@spaces.GPU
|
165 |
+
def run_pose_exploration_b(cam_vis, image1, image2, elevs, elev_ranges, probe_bsz, adj_bsz, adj_iters, seed_value):
|
166 |
+
|
167 |
+
seed_everything(seed_value)
|
168 |
|
169 |
noise = np.random.randn(probe_bsz, 4, 32, 32)
|
170 |
|
|
|
213 |
|
214 |
|
215 |
@spaces.GPU
|
216 |
+
def run_pose_refinement(cam_vis, image1, image2, anchor_polar, explored_sph, refine_iters, seed_value):
|
217 |
+
|
218 |
+
seed_everything(seed_value)
|
219 |
|
220 |
cam_vis.set_images([np.asarray(image1, dtype=np.uint8), np.asarray(image2, dtype=np.uint8)])
|
221 |
|
|
|
304 |
with gr.Accordion('Advanced options', open=False):
|
305 |
probe_bsz = gr.Slider(4, 32, value=16, step=4, label='Probe Batch Size')
|
306 |
adj_bsz = gr.Slider(1, 8, value=4, step=1, label='Adjust Batch Size')
|
307 |
+
adj_iters = gr.Slider(1, 20, value=8, step=1, label='Adjust Iterations')
|
308 |
+
seed_value = gr.Number(value=0, label="Seed Value", precision=0)
|
309 |
|
310 |
with gr.Row():
|
311 |
run_btn = gr.Button('Estimate', variant='primary', interactive=True)
|
|
|
379 |
|
380 |
run_btn.click(
|
381 |
fn=run_preprocess,
|
382 |
+
inputs=[input_image1, input_image2, preprocess_chk, seed_value],
|
383 |
outputs=[processed_image1, processed_image2],
|
384 |
).success(
|
385 |
+
fn=run_pose_exploration_a,
|
386 |
+
inputs=[processed_image1, processed_image2, seed_value],
|
387 |
outputs=[elevs, elev_ranges, vis_output]
|
388 |
).success(
|
389 |
fn=partial(run_pose_exploration_b, cam_vis),
|
390 |
+
inputs=[processed_image1, processed_image2, elevs, elev_ranges, probe_bsz, adj_bsz, adj_iters, seed_value],
|
391 |
outputs=[anchor_polar, explored_sph, vis_output, refine_btn]
|
392 |
)
|
393 |
|
394 |
refine_btn.click(
|
395 |
fn=partial(run_pose_refinement, cam_vis),
|
396 |
+
inputs=[processed_image1, processed_image2, anchor_polar, explored_sph, refine_iters, seed_value],
|
397 |
outputs=[refined_sph, vis_output]
|
398 |
)
|
399 |
|