File size: 14,914 Bytes
8735b2e dbae9bc 8735b2e cb70686 8735b2e 41cc975 8735b2e dbae9bc aa0b89e ad607e9 aa0b89e 9b8c0e9 dbae9bc 5541bd4 dbae9bc 5541bd4 dbae9bc 6a2f0b3 dbae9bc 1ff7671 dbae9bc 8735b2e 52f11f1 8735b2e ba75663 8735b2e d3acaa5 8735b2e 1ff7671 915f326 1ff7671 8735b2e 1ff7671 8735b2e 1f0dbf4 8735b2e ba75663 8735b2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import pandas as pd
import gradio as gr
from pathlib import Path
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import torch
from chronos import ChronosPipeline
from datetime import datetime
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
def filter_data(start, end, df_state, select_product_column, date_column, target_column):
if not date_column:
raise gr.Error("Please select a Date column")
if not target_column:
raise gr.Error("Please select a target column")
start_datetime = pd.to_datetime(datetime.utcfromtimestamp(start))
end_datetime = pd.to_datetime(datetime.utcfromtimestamp(end))
original_date_column = None
original_target_column = None
column_mapping = {
' '.join([word.capitalize() for word in col.split('_')]): col
for col in df_state.columns
}
if date_column in column_mapping:
original_date_column = column_mapping[date_column]
if target_column in column_mapping:
original_target_column = column_mapping[target_column]
df_state[original_date_column] = pd.to_datetime(df_state[original_date_column])
filtered_df = df_state[(df_state[original_date_column] >= start_datetime) & (df_state[original_date_column] <= end_datetime)]
filtered_df = filtered_df.groupby(original_date_column)[original_target_column].sum().reset_index()
filtered_df = filtered_df.sort_values(by=original_date_column)
fig = px.line(filtered_df, x=original_date_column, y=original_target_column, title="Historical Sales Data")
return [filtered_df, fig]
def upload_file(filepath):
name = Path(filepath).name
df = pd.read_csv(filepath.name)
datetime_columns = []
numeric_columns = []
for col in df.columns:
try:
if all(isinstance(float(x), float) for x in df[col].head(3)):
numeric_columns.append(col)
except ValueError:
continue
for col in df.columns:
if df[col].dtype == 'object':
try:
df[col] = pd.to_datetime(df[col])
except:
pass
if df[col].dtype == 'datetime64[ns]':
datetime_columns.append(col)
datetime_columns = list(map(lambda x: ' '.join([word.capitalize() for word in x.split('_')]), datetime_columns))
columns = df.columns.tolist()
transformed_columns = list(map(lambda x: ' '.join([word.capitalize() for word in x.split('_')]), columns))
target_col = list(map(lambda x: ' '.join([word.capitalize() for word in x.split('_')]), numeric_columns))
transformed_columns.insert(0, "")
data_columns = gr.Dropdown(choices=transformed_columns, value=None)
date_columns = gr.Dropdown(choices=datetime_columns, value=None)
target_columns = gr.Dropdown(choices=target_col, value=None)
return [df, data_columns, date_columns, target_columns]
def download_file():
return [gr.UploadButton(visible=True), gr.DownloadButton(visible=False)]
def set_products(selected_column, df_state):
column_mapping = {
' '.join([word.capitalize() for word in col.split('_')]): col
for col in df_state.columns
}
if selected_column in column_mapping:
original_column = column_mapping[selected_column]
unique_values = df_state[original_column].dropna().unique().tolist()
return unique_values
return []
def set_dates(selected_column, df_state):
column_mapping = {
' '.join([word.capitalize() for word in col.split('_')]): col
for col in df_state.columns
}
if selected_column in column_mapping:
original_column = column_mapping[selected_column]
min_date = df_state[original_column].min()
max_date = df_state[original_column].max()
return min_date, max_date
return None, None
def forecast_chronos_data(df_state, date_column, target_column, select_period, forecasting_type):
if not date_column:
raise gr.Error("Please select a Date column")
if not target_column:
raise gr.Error("Please select a target column")
original_date_column = None
original_target_column = None
column_mapping = {
' '.join([word.capitalize() for word in col.split('_')]): col
for col in df_state.columns
}
if date_column in column_mapping:
original_date_column = column_mapping[date_column]
if target_column in column_mapping:
original_target_column = column_mapping[target_column]
df_forecast = pd.DataFrame()
df_forecast['date'] = df_state[original_date_column]
df_forecast['month'] = df_forecast['date'].dt.month
df_forecast['year'] = df_forecast['date'].dt.year
df_forecast['sold_qty'] = df_state[original_target_column]
monthly_sales = df_forecast.groupby(['year', 'month'])['sold_qty'].sum().reset_index()
monthly_sales = monthly_sales.rename(columns={'year': 'year', 'month': 'month', 'sold_qty': 'y'})
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-base",
device_map=device,
torch_dtype=torch.float32,
)
context = torch.tensor(monthly_sales["y"])
prediction_length = select_period
forecast = pipeline.predict(context, prediction_length)
forecast_index = range(len(monthly_sales), len(monthly_sales) + prediction_length)
low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0)
low, median, high = np.ceil(low).astype(int), np.ceil(median).astype(int), np.ceil(high).astype(int)
forecast_index = list(forecast_index)
fig = px.line(
x=monthly_sales.index,
y=monthly_sales["y"],
title="Sales Forecasting Visualization",
labels={"x": "Months", "y": f"{target_column}"},
)
fig.add_trace(
go.Scatter(
x=forecast_index,
y=median,
name="Median Forecast",
line=dict(color="tomato", width=2)
)
)
fig.add_trace(
go.Scatter(
x=forecast_index,
y=high,
name="80% Prediction Interval",
mode='lines',
line=dict(width=2, color='rgba(50, 205, 50, 1)'),
showlegend=False
)
)
fig.add_trace(
go.Scatter(
x=forecast_index,
y=low,
name="10% Prediction Interval",
mode='lines',
line=dict(width=1, color='rgba(255, 255, 0, 1)'),
showlegend=False,
fillcolor='rgba(255, 99, 71, 0.3)',
fill='tonexty',
)
)
fig.update_layout(
title_font_size=20,
xaxis_title_font_size=16,
yaxis_title_font_size=16,
legend_font_size=16,
xaxis_tickfont_size=14,
yaxis_tickfont_size=14,
showlegend=True,
width=1600, # Equivalent to figsize=(30, 10)
height=400,
xaxis=dict(
title="Months",
tickfont=dict(size=14),
gridcolor='rgba(128, 128, 128, 0.7)',
gridwidth=1.2,
dtick=3,
griddash='dash',
rangeslider=dict(visible=True),
rangeselector=dict(
buttons=list([
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=12, label="1y", step="month", stepmode="backward"),
dict(count=24, label="2y", step="month", stepmode="backward"),
dict(step="all", label="All")
])
)
),
yaxis=dict(
gridcolor='rgba(128, 128, 128, 0.7)',
gridwidth=1.2,
dtick=5, # Set tick interval to 5 units
griddash='dash'
),
plot_bgcolor='white'
# margin=dict(l=50, r=50, t=50, b=50)
)
fig.update_traces(
line=dict(color="royalblue", width=2),
selector=dict(name="y") # Updates only the historical data line
)
# Bar Chart
bar_chart = go.Figure()
bar_chart.add_trace(
go.Bar(
x=monthly_sales.index,
y=monthly_sales["y"],
name="Historical Sales",
marker_color='rgba(50, 150, 250, 0.6)', # Light blue color
opacity=0.8
)
)
bar_chart.add_trace(
go.Bar(
x=forecast_index,
y=median,
name="Median Forecast",
marker_color='rgba(255, 99, 71, 0.9)',
opacity=0.8
)
)
bar_chart.update_layout(
title="Sales Forecasting Visualization (Bar Chart)",
xaxis_title="Months",
yaxis_title=f"{target_column}",
title_font_size=20,
xaxis_title_font_size=16,
yaxis_title_font_size=16,
legend_font_size=16,
width=1800,
height=600,
plot_bgcolor='white'
)
return fig, bar_chart
# plt.figure(figsize=(30, 10))
# plt.plot(monthly_sales["y"], color="royalblue", label="Historical Data", linewidth=2)
# plt.plot(forecast_index, median, color="tomato", label="Median Forecast", linewidth=2)
# plt.fill_between(forecast_index, low, high, color="tomato", alpha=0.3, label="80% Prediction Interval")
# plt.title("Sales Forecasting Visualization", fontsize=16)
# plt.xlabel("Months", fontsize=20)
# plt.ylabel("Sold Qty", fontsize=20)
# plt.xticks(fontsize=18)
# plt.yticks(fontsize=18)
# ax = plt.gca()
# ax.xaxis.set_major_locator(ticker.MultipleLocator(3))
# ax.yaxis.set_major_locator(ticker.MultipleLocator(5))
# ax.grid(which='major', linestyle='--', linewidth=1.2, color='gray', alpha=0.7)
# plt.legend(fontsize=18)
# plt.grid(linestyle='--', linewidth=1.2, color='gray', alpha=0.7)
# plt.tight_layout()
# return plt.gcf()
def home_page():
content = """
### **Sales Forecasting with Chronos**
Welcome to the future of sales optimization with **Chronos**.
Say goodbye to guesswork and unlock the power of **data-driven insights** with our advanced forecasting platform.
- **Seamless CSV Upload**: Quickly upload your sales data in CSV formatβno technical expertise needed.
- **AI-Powered Predictions**: Harness the power of state-of-the-art machine learning models to uncover trends and forecast future sales performance.
- **Interactive Visualizations**: Gain actionable insights with intuitive charts and graphs that make data easy to understand.
Start making smarter, data-backed business decisions today with **Chronos**!
"""
return content
def about_page():
content = """
### π§ **Contact Us:**
- **Email**: [email protected] βοΈ
- **Website**: [https://www.topsinfosolutions.com/](https://www.topsinfosolutions.com/) π
### π **What We Offer:**
- **Custom AI Solutions**: Tailored to your business needs π€
- **Chatbot Development**: Build intelligent conversational agents π¬
- **Vision Models**: Computer vision solutions for various applications πΌοΈ
- **AI Agents**: Personalized agents powered by advanced LLMs π€
### π€ **How We Can Help:**
Reach out to us for bespoke AI services. Whether you need chatbots, vision models, or AI-powered agents, weβre here to build solutions that make a difference! π
### π¬ **Get in Touch:**
If you have any questions or need a custom solution, click the button below to schedule a consultation with us. π
"""
return content
with gr.Blocks(theme=gr.themes.Default()) as demo:
with gr.Tabs():
with gr.TabItem("Home"):
df_state = gr.State()
# gr.Image("/content/chronos-logo.png", interactive=False)
home_output = gr.Markdown(value=home_page(), label="Playground")
gr.Markdown("## Step 1: Historical/Training Data (currently supports *.csv only)")
with gr.Row():
file_input = gr.File(label="Upload Historical (Training Data) Sales Data", file_types=[".csv"])
with gr.Row():
date_column = gr.Dropdown(choices=[], label="Select Date column (*Required)", multiselect=False, value=None)
target_column = gr.Dropdown(choices=[], label="Select Target column (*Required)", multiselect=False, value=None)
select_product_column = gr.Dropdown(choices=[], label="Select Product column (Optional)", multiselect=False, value=None)
select_product = gr.Dropdown(choices=[], label="Select Product (Optional)", multiselect=False, value=None)
with gr.Row():
start = gr.DateTime("2021-01-01 00:00:00", label="Training data Start date")
end = gr.DateTime("2021-01-05 00:00:00", label="Training data End date")
apply_btn = gr.Button("Visualize Data", scale=0)
gr.Examples(
examples=[
["example_files/test_tops_product_id_1.csv"],
["example_files/test_tops_product_id_2.csv"],
["example_files/test_tops_product_id_3.csv"],
["example_files/test_tops_product_id_4.csv"]
],
inputs=file_input,
outputs=[df_state, select_product_column, date_column, target_column],
fn=upload_file,
)
with gr.Row():
historical_data_plot = gr.Plot()
apply_btn.click(
filter_data,
inputs=[start, end, df_state, select_product_column, date_column, target_column],
outputs=[df_state, historical_data_plot]
)
gr.Markdown("## Step 2: Forecast")
with gr.Row():
forecasting_type = gr.Radio(["day", "monthly", "year"], value="monthly", label="Forecasting Type", interactive=False)
select_period = gr.Slider(2, 60, value=12, label="Select Period", info="Check Selected Forecast Type", interactive =True, step=1)
forecast_btn = gr.Button("Forecast")
with gr.Tabs():
with gr.TabItem("Line Chart"):
with gr.Row():
plot_forecast_output = gr.Plot(label="Chronos Forecasting Visualization (Line)")
with gr.TabItem("Bar Chart"):
with gr.Row():
bar_plot_forecast_output = gr.Plot(label="Chronos Forecasting Visualization (Bar)")
forecast_btn.click(
forecast_chronos_data,
inputs=[df_state, date_column, target_column, select_period],
outputs=[plot_forecast_output, bar_plot_forecast_output]
)
file_input.change(
upload_file,
inputs=[file_input],
outputs=[df_state, select_product_column, date_column, target_column]
)
select_product_column.change(
set_products,
inputs=[select_product_column, df_state],
outputs=[]
)
date_column.change(
set_dates,
inputs=[date_column, df_state],
outputs=[start, end]
)
target_column.change(
lambda x: x if x else [],
inputs=[target_column],
outputs=[]
)
with gr.TabItem("About Tops"):
df_state = gr.State()
# gr.Image("/content/chronos-logo.png", interactive=False)
about_output = gr.Markdown(value=about_page(), label="About Tops")
if __name__ == "__main__":
demo.launch()
|