TOPSInfosol's picture
Update app.py
cb70686 verified
raw
history blame
11.2 kB
import pandas as pd
import gradio as gr
from pathlib import Path
import plotly.express as px
import numpy as np
import torch
from chronos import ChronosPipeline
from datetime import datetime
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
def filter_data(start, end, df_state, select_product_column, date_column, target_column):
if not date_column:
raise gr.Error("Please select a Date column")
if not target_column:
raise gr.Error("Please select a target column")
start_datetime = pd.to_datetime(datetime.utcfromtimestamp(start))
end_datetime = pd.to_datetime(datetime.utcfromtimestamp(end))
original_date_column = None
original_target_column = None
column_mapping = {
' '.join([word.capitalize() for word in col.split('_')]): col
for col in df_state.columns
}
if date_column in column_mapping:
original_date_column = column_mapping[date_column]
if target_column in column_mapping:
original_target_column = column_mapping[target_column]
df_state[original_date_column] = pd.to_datetime(df_state[original_date_column])
filtered_df = df_state[(df_state[original_date_column] >= start_datetime) & (df_state[original_date_column] <= end_datetime)]
filtered_df = filtered_df.groupby(original_date_column)[original_target_column].sum().reset_index()
filtered_df = filtered_df.sort_values(by=original_date_column)
fig = px.line(filtered_df, x=original_date_column, y=original_target_column, title="Historical Sales Data")
return [filtered_df, fig]
def upload_file(filepath):
name = Path(filepath).name
df = pd.read_csv(filepath.name)
datetime_columns = []
numeric_columns = []
for col in df.columns:
try:
if all(isinstance(float(x), float) for x in df[col].head(3)):
numeric_columns.append(col)
except ValueError:
continue
for col in df.columns:
if df[col].dtype == 'object':
try:
df[col] = pd.to_datetime(df[col])
except:
pass
if df[col].dtype == 'datetime64[ns]':
datetime_columns.append(col)
datetime_columns = list(map(lambda x: ' '.join([word.capitalize() for word in x.split('_')]), datetime_columns))
columns = df.columns.tolist()
transformed_columns = list(map(lambda x: ' '.join([word.capitalize() for word in x.split('_')]), columns))
target_col = list(map(lambda x: ' '.join([word.capitalize() for word in x.split('_')]), numeric_columns))
transformed_columns.insert(0, "")
data_columns = gr.Dropdown(choices=transformed_columns, value=None)
date_columns = gr.Dropdown(choices=datetime_columns, value=None)
target_columns = gr.Dropdown(choices=target_col, value=None)
return [df, data_columns, date_columns, target_columns]
def download_file():
return [gr.UploadButton(visible=True), gr.DownloadButton(visible=False)]
def set_products(selected_column, df_state):
column_mapping = {
' '.join([word.capitalize() for word in col.split('_')]): col
for col in df_state.columns
}
if selected_column in column_mapping:
original_column = column_mapping[selected_column]
unique_values = df_state[original_column].dropna().unique().tolist()
return unique_values
return []
def set_dates(selected_column, df_state):
column_mapping = {
' '.join([word.capitalize() for word in col.split('_')]): col
for col in df_state.columns
}
if selected_column in column_mapping:
original_column = column_mapping[selected_column]
min_date = df_state[original_column].min()
max_date = df_state[original_column].max()
return min_date, max_date
return None, None
def forecast_chronos_data(df_state, date_column, target_column, select_period, forecasting_type):
if not date_column:
raise gr.Error("Please select a Date column")
if not target_column:
raise gr.Error("Please select a target column")
original_date_column = None
original_target_column = None
column_mapping = {
' '.join([word.capitalize() for word in col.split('_')]): col
for col in df_state.columns
}
if date_column in column_mapping:
original_date_column = column_mapping[date_column]
if target_column in column_mapping:
original_target_column = column_mapping[target_column]
df_forecast = pd.DataFrame()
df_forecast['date'] = df_state[original_date_column]
df_forecast['month'] = df_forecast['date'].dt.month
df_forecast['year'] = df_forecast['date'].dt.year
df_forecast['sold_qty'] = df_state[original_target_column]
monthly_sales = df_forecast.groupby(['year', 'month'])['sold_qty'].sum().reset_index()
monthly_sales = monthly_sales.rename(columns={'year': 'year', 'month': 'month', 'sold_qty': 'y'})
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-base",
device_map=device,
torch_dtype=torch.float32,
)
context = torch.tensor(monthly_sales["y"])
prediction_length = select_period
forecast = pipeline.predict(context, prediction_length)
forecast_index = range(len(monthly_sales), len(monthly_sales) + prediction_length)
low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0)
plt.figure(figsize=(30, 10))
plt.plot(monthly_sales["y"], color="royalblue", label="Historical Data", linewidth=2)
plt.plot(forecast_index, median, color="tomato", label="Median Forecast", linewidth=2)
plt.fill_between(forecast_index, low, high, color="tomato", alpha=0.3, label="80% Prediction Interval")
plt.title("Sales Forecasting Visualization", fontsize=16)
plt.xlabel("Months", fontsize=20)
plt.ylabel("Sold Qty", fontsize=20)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
ax = plt.gca()
ax.xaxis.set_major_locator(ticker.MultipleLocator(3))
ax.yaxis.set_major_locator(ticker.MultipleLocator(5))
ax.grid(which='major', linestyle='--', linewidth=1.2, color='gray', alpha=0.7)
plt.legend(fontsize=18)
plt.grid(linestyle='--', linewidth=1.2, color='gray', alpha=0.7)
plt.tight_layout()
return plt.gcf()
def home_page():
content = """
### **Sales Forecasting with Chronos**
Welcome to the future of sales optimization with **Chronos**.
Say goodbye to guesswork and unlock the power of **data-driven insights** with our advanced forecasting platform.
- **Seamless CSV Upload**: Quickly upload your sales data in CSV formatβ€”no technical expertise needed.
- **AI-Powered Predictions**: Harness the power of state-of-the-art machine learning models to uncover trends and forecast future sales performance.
- **Interactive Visualizations**: Gain actionable insights with intuitive charts and graphs that make data easy to understand.
Start making smarter, data-backed business decisions today with **Chronos**!
"""
return content
def about_page():
content = """
### πŸ“§ **Contact Us:**
- **Email**: [email protected] βœ‰οΈ
- **Website**: [https://www.topsinfosolutions.com/](https://www.topsinfosolutions.com/) 🌐
### πŸ›  **What We Offer:**
- **Custom AI Solutions**: Tailored to your business needs πŸ€–
- **Chatbot Development**: Build intelligent conversational agents πŸ’¬
- **Vision Models**: Computer vision solutions for various applications πŸ–ΌοΈ
- **AI Agents**: Personalized agents powered by advanced LLMs πŸ€–
### πŸ€” **How We Can Help:**
Reach out to us for bespoke AI services. Whether you need chatbots, vision models, or AI-powered agents, we’re here to build solutions that make a difference! 🌟
### πŸ’¬ **Get in Touch:**
If you have any questions or need a custom solution, click the button below to schedule a consultation with us. πŸ“…
"""
return content
with gr.Blocks(theme=gr.themes.Default()) as demo:
with gr.Tabs():
with gr.TabItem("Home"):
df_state = gr.State()
# gr.Image("/content/chronos-logo.png", interactive=False)
home_output = gr.Markdown(value=home_page(), label="Playground")
gr.Markdown("## Step 1: Historical/Training Data (currently supports *.csv only)")
with gr.Row():
file_input = gr.File(label="Upload Historical (Training Data) Sales Data", file_types=[".csv"])
with gr.Row():
date_column = gr.Dropdown(choices=[], label="Select Date column (*Required)", multiselect=False, value=None)
target_column = gr.Dropdown(choices=[], label="Select Target column (*Required)", multiselect=False, value=None)
select_product_column = gr.Dropdown(choices=[], label="Select Product column (Optional)", multiselect=False, value=None)
select_product = gr.Dropdown(choices=[], label="Select Product (Optional)", multiselect=False, value=None)
with gr.Row():
start = gr.DateTime("2021-01-01 00:00:00", label="Training data Start date")
end = gr.DateTime("2021-01-05 00:00:00", label="Training data End date")
apply_btn = gr.Button("Visualize Data", scale=0)
gr.Examples(
examples=[
["example_files/test_tops_product_id_1.csv"],
["example_files/test_tops_product_id_2.csv"],
["example_files/test_tops_product_id_3.csv"],
["example_files/test_tops_product_id_4.csv"]
],
inputs=file_input,
outputs=[df_state, select_product_column, date_column, target_column],
fn=upload_file,
)
with gr.Row():
historical_data_plot = gr.Plot()
apply_btn.click(
filter_data,
inputs=[start, end, df_state, select_product_column, date_column, target_column],
outputs=[df_state, historical_data_plot]
)
gr.Markdown("## Step 2: Forecast")
with gr.Row():
forecasting_type = gr.Radio(["day", "monthly", "year"], value="monthly", label="Forecasting Type", interactive=False)
select_period = gr.Slider(2, 60, value=12, label="Select Period", info="Check Selected Forecast Type", interactive =True, step=1)
forecast_btn = gr.Button("Forecast")
with gr.Row():
plot_forecast_output = gr.Plot(label="Chronos Forecasting Visualization")
forecast_btn.click(
forecast_chronos_data,
inputs=[df_state, date_column, target_column, select_period],
outputs=[plot_forecast_output]
)
file_input.upload(
upload_file,
inputs=[file_input],
outputs=[df_state, select_product_column, date_column, target_column]
)
select_product_column.change(
set_products,
inputs=[select_product_column, df_state],
outputs=[]
)
date_column.change(
set_dates,
inputs=[date_column, df_state],
outputs=[start, end]
)
target_column.change(
lambda x: x if x else [],
inputs=[target_column],
outputs=[]
)
with gr.TabItem("About Tops"):
df_state = gr.State()
# gr.Image("/content/chronos-logo.png", interactive=False)
about_output = gr.Markdown(value=about_page(), label="About Tops")
if __name__ == "__main__":
demo.launch()