Spaces:
Sleeping
Sleeping
File size: 6,896 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
trainer:
target: trainer.TrainerSDTurboSR
sd_pipe:
target: diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline
num_train_steps: 1000
enable_grad_checkpoint: True
compile: False
vae_split: 8
params:
pretrained_model_name_or_path: stabilityai/sd-turbo
cache_dir: weights
use_safetensors: True
torch_dtype: torch.float16
llpips:
target: latent_lpips.lpips.LPIPS
ckpt_path: weights/vgg16_sdturbo_lpips.pth
compile: False
params:
pretrained: False
net: vgg16
lpips: True
spatial: False
pnet_rand: False
pnet_tune: True
use_dropout: True
eval_mode: True
latent: True
in_chans: 4
verbose: True
model:
target: diffusers.models.autoencoders.NoisePredictor
ckpt_start_path: ~ # only used for training the intermidiate model
ckpt_path: ~ # For initializing
compile: False
params:
in_channels: 3
down_block_types:
- AttnDownBlock2D
- AttnDownBlock2D
up_block_types:
- AttnUpBlock2D
- AttnUpBlock2D
block_out_channels:
- 256 # 192, 256
- 512 # 384, 512
layers_per_block:
- 3
- 3
act_fn: silu
latent_channels: 4
norm_num_groups: 32
sample_size: 128
mid_block_add_attention: True
resnet_time_scale_shift: default
temb_channels: 512
attention_head_dim: 64
freq_shift: 0
flip_sin_to_cos: True
double_z: True
discriminator:
target: diffusers.models.unets.unet_2d_condition_discriminator.UNet2DConditionDiscriminator
enable_grad_checkpoint: True
compile: False
params:
sample_size: 64
in_channels: 4
center_input_sample: False
flip_sin_to_cos: True
freq_shift: 0
down_block_types:
- DownBlock2D
- CrossAttnDownBlock2D
- CrossAttnDownBlock2D
mid_block_type: UNetMidBlock2DCrossAttn
up_block_types:
- CrossAttnUpBlock2D
- CrossAttnUpBlock2D
- UpBlock2D
only_cross_attention: False
block_out_channels:
- 128
- 256
- 512
layers_per_block:
- 1
- 2
- 2
downsample_padding: 1
mid_block_scale_factor: 1
dropout: 0.0
act_fn: silu
norm_num_groups: 32
norm_eps: 1e-5
cross_attention_dim: 1024
transformer_layers_per_block: 1
reverse_transformer_layers_per_block: ~
encoder_hid_dim: ~
encoder_hid_dim_type: ~
attention_head_dim:
- 8
- 16
- 16
num_attention_heads: ~
dual_cross_attention: False
use_linear_projection: False
class_embed_type: ~
addition_embed_type: text
addition_time_embed_dim: 256
num_class_embeds: ~
upcast_attention: ~
resnet_time_scale_shift: default
resnet_skip_time_act: False
resnet_out_scale_factor: 1.0
time_embedding_type: positional
time_embedding_dim: ~
time_embedding_act_fn: ~
timestep_post_act: ~
time_cond_proj_dim: ~
conv_in_kernel: 3
conv_out_kernel: 3
projection_class_embeddings_input_dim: 2560
attention_type: default
class_embeddings_concat: False
mid_block_only_cross_attention: ~
cross_attention_norm: ~
addition_embed_type_num_heads: 64
degradation:
sf: 4
# the first degradation process
resize_prob: [0.2, 0.7, 0.1] # up, down, keep
resize_range: [0.15, 1.5]
gaussian_noise_prob: 0.5
noise_range: [1, 30]
poisson_scale_range: [0.05, 3.0]
gray_noise_prob: 0.4
jpeg_range: [30, 95]
# the second degradation process
second_order_prob: 0.5
second_blur_prob: 0.8
resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
resize_range2: [0.3, 1.2]
gaussian_noise_prob2: 0.5
noise_range2: [1, 25]
poisson_scale_range2: [0.05, 2.5]
gray_noise_prob2: 0.4
jpeg_range2: [30, 95]
gt_size: 512
resize_back: False
use_sharp: False
data:
train:
type: realesrgan
params:
data_source:
source1:
root_path: /mnt/sfs-common/zsyue/database/FFHQ
image_path: images1024
moment_path: ~
text_path: ~
im_ext: png
length: 20000
source2:
root_path: /mnt/sfs-common/zsyue/database/LSDIR/train
image_path: images
moment_path: ~
text_path: ~
im_ext: png
max_token_length: 77 # 77
io_backend:
type: disk
blur_kernel_size: 21
kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
sinc_prob: 0.1
blur_sigma: [0.2, 3.0]
betag_range: [0.5, 4.0]
betap_range: [1, 2.0]
blur_kernel_size2: 15
kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
sinc_prob2: 0.1
blur_sigma2: [0.2, 1.5]
betag_range2: [0.5, 4.0]
betap_range2: [1, 2.0]
final_sinc_prob: 0.8
gt_size: ${degradation.gt_size}
use_hflip: True
use_rot: False
random_crop: True
val:
type: base
params:
dir_path: /mnt/sfs-common/zsyue/projects/DifInv/SR/testingdata/imagenet512/lq
transform_type: default
transform_kwargs:
mean: 0.0
std: 1.0
extra_dir_path: /mnt/sfs-common/zsyue/projects/DifInv/SR/testingdata/imagenet512/gt
extra_transform_type: default
extra_transform_kwargs:
mean: 0.0
std: 1.0
im_exts: png
length: 16
recursive: False
train:
# predict started inverser
start_mode: True
# learning rate
lr: 5e-5 # learning rate
lr_min: 5e-5 # learning rate
lr_schedule: ~
warmup_iterations: 2000
# discriminator
lr_dis: 5e-5 # learning rate for dicriminator
weight_decay_dis: 1e-3 # weight decay for dicriminator
dis_init_iterations: 10000 # iterations used for updating the discriminator
dis_update_freq: 1
# dataloader
batch: 64
microbatch: 16
num_workers: 4
prefetch_factor: 2
use_text: True
# optimization settings
weight_decay: 0
ema_rate: 0.999
iterations: 200000 # total iterations
# logging
save_freq: 5000
log_freq: [200, 5000] # [training loss, training images, val images]
local_logging: True # manually save images
tf_logging: False # tensorboard logging
# loss
loss_type: L2
loss_coef:
ldif: 1.0
timesteps: [200, 100]
num_inference_steps: 5
# mixed precision
use_amp: True
use_fsdp: False
# random seed
seed: 123456
global_seeding: False
noise_detach: False
validate:
batch: 2
use_ema: True
log_freq: 4 # logging frequence
val_y_channel: True
|