File size: 13,194 Bytes
3cfd212 5f5eb85 974fb3c 7652a7b 5f5eb85 f0e76cb 3cfd212 b60f995 5f5eb85 3cfd212 f9ef62b 3cfd212 5f5eb85 f7c2ff7 5f5eb85 dbb4d06 786c7d5 5f5eb85 3cfd212 544f140 b60f995 3cfd212 0120490 f4470aa 0120490 f9ef62b 0120490 f0e76cb 10a7862 f0e76cb 3cfd212 5f5eb85 b60f995 974fb3c 5f5eb85 f0e76cb 544f140 7652a7b 974fb3c 786c7d5 7652a7b 3859cbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import json
import os
import time
from typing import List, Any, Optional, Union, Tuple
import numpy as np
import pandas as pd
import gc
import re
from dataclasses import dataclass
from datetime import datetime, timezone
from pathlib import Path
from enum import Enum
from string import Template
from json.decoder import JSONDecodeError
DEFAULT_MECH_FEE = 0.01
REDUCE_FACTOR = 0.25
SLEEP = 0.5
REQUEST_ID_FIELD = "request_id"
SCRIPTS_DIR = Path(__file__).parent
ROOT_DIR = SCRIPTS_DIR.parent
DATA_DIR = ROOT_DIR / "data"
JSON_DATA_DIR = ROOT_DIR / "json_data"
HIST_DIR = ROOT_DIR / "historical_data"
TMP_DIR = ROOT_DIR / "tmp"
BLOCK_FIELD = "block"
CID_PREFIX = "f01701220"
REQUEST_ID = "requestId"
REQUEST_SENDER = "sender"
PROMPT_FIELD = "prompt"
HTTP = "http://"
HTTPS = HTTP[:4] + "s" + HTTP[4:]
FORMAT_UPDATE_BLOCK_NUMBER = 30411638
INVALID_ANSWER_HEX = (
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
)
OLD_IPFS_ADDRESS = "https://gateway.autonolas.tech/ipfs/"
IPFS_ADDRESS = "https://gateway.gcp.autonolas.tech/ipfs/"
INC_TOOLS = [
"prediction-online",
"prediction-offline",
"claude-prediction-online",
"claude-prediction-offline",
"prediction-offline-sme",
"prediction-online-sme",
"prediction-request-rag",
"prediction-request-reasoning",
"prediction-url-cot-claude",
"prediction-request-rag-claude",
"prediction-request-reasoning-claude",
"superforcaster",
]
SUBGRAPH_URL = Template(
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/7s9rGBffUTL8kDZuxvvpuc46v44iuDarbrADBFw5uVp2"""
)
OMEN_SUBGRAPH_URL = Template(
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
)
NETWORK_SUBGRAPH_URL = Template(
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/FxV6YUix58SpYmLBwc9gEHkwjfkqwe1X5FJQjn8nKPyA"""
)
# THEGRAPH_ENDPOINT = (
# "https://api.studio.thegraph.com/query/78829/mech-predict/version/latest"
# )
MECH_SUBGRAPH_URL = Template(
"""https://gateway.thegraph.com/api/${subgraph_api_key}/subgraphs/id/4YGoX3iXUni1NBhWJS5xyKcntrAzssfytJK7PQxxQk5g"""
)
SUBGRAPH_API_KEY = os.environ.get("SUBGRAPH_API_KEY", None)
RPC = os.environ.get("RPC", None)
class MechEventName(Enum):
"""The mech's event names."""
REQUEST = "Request"
DELIVER = "Deliver"
@dataclass
class MechEvent:
"""A mech's on-chain event representation."""
for_block: int
requestId: int
data: bytes
sender: str
def _ipfs_link(self) -> Optional[str]:
"""Get the ipfs link for the data."""
return f"{IPFS_ADDRESS}{CID_PREFIX}{self.data.hex()}"
@property
def ipfs_request_link(self) -> Optional[str]:
"""Get the IPFS link for the request."""
return f"{self._ipfs_link()}/metadata.json"
@property
def ipfs_deliver_link(self) -> Optional[str]:
"""Get the IPFS link for the deliver."""
if self.requestId is None:
return None
return f"{self._ipfs_link()}/{self.requestId}"
def ipfs_link(self, event_name: MechEventName) -> Optional[str]:
"""Get the ipfs link based on the event."""
if event_name == MechEventName.REQUEST:
if self.for_block < FORMAT_UPDATE_BLOCK_NUMBER:
return self._ipfs_link()
return self.ipfs_request_link
if event_name == MechEventName.DELIVER:
return self.ipfs_deliver_link
return None
@dataclass(init=False)
class MechRequest:
"""A structure for a request to a mech."""
request_id: Optional[int]
request_block: Optional[int]
prompt_request: Optional[str]
tool: Optional[str]
nonce: Optional[str]
trader_address: Optional[str]
def __init__(self, **kwargs: Any) -> None:
"""Initialize the request ignoring extra keys."""
self.request_id = int(kwargs.pop(REQUEST_ID, 0))
self.request_block = int(kwargs.pop(BLOCK_FIELD, 0))
self.prompt_request = kwargs.pop(PROMPT_FIELD, None)
self.tool = kwargs.pop("tool", None)
self.nonce = kwargs.pop("nonce", None)
self.trader_address = kwargs.pop("sender", None)
@dataclass(init=False)
class PredictionResponse:
"""A response of a prediction."""
p_yes: float
p_no: float
confidence: float
info_utility: float
vote: Optional[str]
win_probability: Optional[float]
def __init__(self, **kwargs: Any) -> None:
"""Initialize the mech's prediction ignoring extra keys."""
try:
self.p_yes = float(kwargs.pop("p_yes"))
self.p_no = float(kwargs.pop("p_no"))
self.confidence = float(kwargs.pop("confidence"))
self.info_utility = float(kwargs.pop("info_utility"))
self.win_probability = 0
# Validate probabilities
probabilities = {
"p_yes": self.p_yes,
"p_no": self.p_no,
"confidence": self.confidence,
"info_utility": self.info_utility,
}
for name, prob in probabilities.items():
if not 0 <= prob <= 1:
raise ValueError(f"{name} probability is out of bounds: {prob}")
if self.p_yes + self.p_no != 1:
raise ValueError(
f"Sum of p_yes and p_no is not 1: {self.p_yes} + {self.p_no}"
)
self.vote = self.get_vote()
self.win_probability = self.get_win_probability()
except KeyError as e:
raise KeyError(f"Missing key in PredictionResponse: {e}")
except ValueError as e:
raise ValueError(f"Invalid value in PredictionResponse: {e}")
def get_vote(self) -> Optional[str]:
"""Return the vote."""
if self.p_no == self.p_yes:
return None
if self.p_no > self.p_yes:
return "No"
return "Yes"
def get_win_probability(self) -> Optional[float]:
"""Return the probability estimation for winning with vote."""
return max(self.p_no, self.p_yes)
@dataclass(init=False)
class MechResponse:
"""A structure for the response of a mech."""
request_id: int
deliver_block: Optional[int]
result: Optional[PredictionResponse]
error: Optional[str]
error_message: Optional[str]
prompt_response: Optional[str]
mech_address: Optional[str]
def __init__(self, **kwargs: Any) -> None:
"""Initialize the mech's response ignoring extra keys."""
self.error = kwargs.get("error", None)
self.request_id = int(kwargs.get(REQUEST_ID, 0))
self.deliver_block = int(kwargs.get(BLOCK_FIELD, 0))
self.result = kwargs.get("result", None)
self.prompt_response = kwargs.get(PROMPT_FIELD, None)
self.mech_address = kwargs.get("sender", None)
if self.result != "Invalid response":
self.error_message = kwargs.get("error_message", None)
try:
if isinstance(self.result, str):
kwargs = json.loads(self.result)
self.result = PredictionResponse(**kwargs)
self.error = 0
except JSONDecodeError:
self.error_message = "Response parsing error"
self.error = 1
except Exception as e:
self.error_message = str(e)
self.error = 1
else:
self.error_message = "Invalid response from tool"
self.error = 1
self.result = None
EVENT_TO_MECH_STRUCT = {
MechEventName.REQUEST: MechRequest,
MechEventName.DELIVER: MechResponse,
}
def transform_to_datetime(x):
return datetime.fromtimestamp(int(x), tz=timezone.utc)
def measure_execution_time(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time:.6f} seconds")
return result
return wrapper
def limit_text(text: str, limit: int = 200) -> str:
"""Limit the given text"""
if len(text) > limit:
return f"{text[:limit]}..."
return text
def check_for_dicts(df: pd.DataFrame) -> List[str]:
"""Check for columns that contain dictionaries."""
dict_columns = []
for column in df.columns:
if df[column].apply(lambda x: isinstance(x, dict)).any():
dict_columns.append(column)
return dict_columns
def drop_dict_rows(df: pd.DataFrame, dict_columns: List[str]) -> pd.DataFrame:
"""Drop rows that contain dictionaries."""
for column in dict_columns:
df = df[~df[column].apply(lambda x: isinstance(x, dict))]
return df
def clean(df: pd.DataFrame) -> pd.DataFrame:
"""Clean the dataframe."""
dict_columns = check_for_dicts(df)
df = drop_dict_rows(df, dict_columns)
cleaned = df.drop_duplicates()
cleaned[REQUEST_ID_FIELD] = cleaned[REQUEST_ID_FIELD].astype("str")
return cleaned
def gen_event_filename(event_name: MechEventName) -> str:
"""Generate the filename of an event."""
return f"{event_name.value.lower()}s.parquet"
def read_n_last_lines(filename: str, n: int = 1) -> str:
"""Return the `n` last lines' content of a file."""
num_newlines = 0
with open(filename, "rb") as f:
try:
f.seek(-2, os.SEEK_END)
while num_newlines < n:
f.seek(-2, os.SEEK_CUR)
if f.read(1) == b"\n":
num_newlines += 1
except OSError:
f.seek(0)
last_line = f.readline().decode()
return last_line
def get_question(text: str) -> str:
"""Get the question from a text."""
# Regex to find text within double quotes
pattern = r'"([^"]*)"'
# Find all occurrences
questions = re.findall(pattern, text)
# Assuming you want the first question if there are multiple
question = questions[0] if questions else None
return question
def current_answer(text: str, fpmms: pd.DataFrame) -> Optional[str]:
"""Get the current answer for a question."""
row = fpmms[fpmms["title"] == text]
if row.shape[0] == 0:
return None
return row["currentAnswer"].values[0]
def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:
"""Convert hex to int"""
if isinstance(x, float):
return np.nan
if isinstance(x, str):
if x == INVALID_ANSWER_HEX:
return -1
return int(x, 16)
def wei_to_unit(wei: int) -> float:
"""Converts wei to currency unit."""
return wei / 10**18
def get_vote(p_yes, p_no) -> Optional[str]:
"""Return the vote."""
if p_no == p_yes:
return None
if p_no > p_yes:
return "No"
return "Yes"
def get_win_probability(p_yes, p_no) -> Optional[float]:
"""Return the probability estimation for winning with vote."""
return max(p_no, p_yes)
def get_result_values(result: str) -> Tuple:
if result == "Invalid response":
return 1, "Invalid response from tool", None
error_message = None
params = None
try:
if isinstance(result, str):
params = json.loads(result)
error_value = 0
except JSONDecodeError:
error_message = "Response parsing error"
error_value = 1
except Exception as e:
error_message = str(e)
error_value = 1
return error_value, error_message, params
def get_prediction_values(params: dict) -> Tuple:
p_yes = float(params.pop("p_yes"))
p_no = float(params.pop("p_no"))
confidence = float(params.pop("confidence"))
info_utility = float(params.pop("info_utility"))
return p_yes, p_no, confidence, info_utility
def to_content(q: str) -> dict[str, Any]:
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
finalized_query = {
"query": q,
"variables": None,
"extensions": {"headers": None},
}
return finalized_query
def read_parquet_files(tools_filename: str, trades_filename: str):
# Check if tools.parquet is in the same directory
try:
tools = pd.read_parquet(DATA_DIR / tools_filename)
# make sure creator_address is in the columns
assert "trader_address" in tools.columns, "trader_address column not found"
# lowercase and strip creator_address
tools["trader_address"] = tools["trader_address"].str.lower().str.strip()
# drop duplicates
tools.drop_duplicates(inplace=True)
print(f"{tools_filename} loaded")
except FileNotFoundError:
print("tools.parquet not found. Please run tools.py first.")
return
try:
fpmmTrades = pd.read_parquet(DATA_DIR / trades_filename)
fpmmTrades["trader_address"] = (
fpmmTrades["trader_address"].str.lower().str.strip()
)
except FileNotFoundError:
print("fpmmsTrades.parquet not found.")
return
return tools, fpmmTrades
|