File size: 14,701 Bytes
6058372 04a2c17 0276fdf 04a2c17 d0c9622 6058372 6ecf2db 04a2c17 5f5eb85 e01feae 04a2c17 e01feae 04a2c17 53ce693 04a2c17 53ce693 5f5eb85 04a2c17 5f5eb85 04a2c17 ee6e792 3950f25 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 0621b0b 04a2c17 0120490 6058372 6ecf2db 5f5eb85 6ecf2db 5f5eb85 6ecf2db 5f5eb85 bab948b 5a096cc 5f5eb85 eeb064d 6058372 b5967d8 6058372 5a096cc 6e05e6b 5a096cc eeb064d 6058372 6e05e6b 6058372 6e05e6b 5f5eb85 3950f25 5f5eb85 3950f25 d0c9622 5f5eb85 3950f25 d0c9622 ff9989e 5a096cc 3950f25 e01feae 04a2c17 5f5eb85 3d5e7d2 ff9989e 711723d d0c9622 c52bc65 5f5eb85 3950f25 d0c9622 3950f25 04a2c17 711723d 04a2c17 5f5eb85 53ce693 04a2c17 5f5eb85 04a2c17 53ce693 04a2c17 53ce693 04a2c17 0621b0b 04a2c17 53ce693 04a2c17 53ce693 04a2c17 0621b0b 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 53ce693 04a2c17 0621b0b 04a2c17 0621b0b 5f5eb85 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 0621b0b 5f5eb85 04a2c17 5f5eb85 04a2c17 3d5e7d2 5f5eb85 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 3d5e7d2 45e36b4 c7ab4d8 ee6e792 45e36b4 04a2c17 45e36b4 ab87186 ee6e792 d0c9622 c7ab4d8 23fcc73 ee6e792 45e36b4 d0c9622 ab87186 d0c9622 3950f25 4d0d684 3950f25 19597dd 3950f25 cdbc522 3950f25 19597dd 3950f25 04a2c17 0621b0b 04a2c17 5f5eb85 04a2c17 0621b0b 04a2c17 5f5eb85 04a2c17 3d5e7d2 5f5eb85 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 3d5e7d2 04a2c17 0621b0b 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 3d5e7d2 5f5eb85 04a2c17 5f5eb85 04a2c17 5f5eb85 04a2c17 3d5e7d2 04a2c17 3d5e7d2 04a2c17 0621b0b 04a2c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
from datetime import datetime, timedelta
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import duckdb
import logging
from tabs.trades import (
prepare_trades,
get_overall_trades,
get_overall_by_market_trades,
get_overall_winning_trades,
get_overall_winning_by_market_trades,
plot_trades_by_week,
plot_trades_per_market_by_week,
plot_winning_trades_by_week,
plot_winning_trades_per_market_by_week,
plot_trade_details,
)
from tabs.tool_win import (
get_tool_winning_rate,
get_overall_winning_rate,
plot_tool_winnings_overall,
plot_tool_winnings_by_tool,
)
from tabs.tool_accuracy import (
compute_weighted_accuracy,
plot_tools_accuracy_graph,
plot_tools_weighted_accuracy_graph,
)
from tabs.invalid_markets import (
plot_daily_dist_invalid_trades,
plot_ratio_invalid_trades_per_market,
plot_top_invalid_markets,
plot_daily_nr_invalid_markets,
)
from tabs.error import (
get_error_data,
get_error_data_overall,
plot_error_data,
plot_tool_error_data,
plot_week_error_data,
)
from tabs.about import about_olas_predict, about_this_dashboard
from scripts.utils import INC_TOOLS
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def get_last_one_month_data():
"""
Get the last one month data from the tools.parquet file
"""
logger.info("Getting last one month data")
con = duckdb.connect(":memory:")
one_months_ago = (datetime.now() - timedelta(days=60)).strftime("%Y-%m-%d")
# Query to fetch data from all_trades_profitability.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
WHERE creation_timestamp >= '{one_months_ago}'
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got last one month data from all_trades_profitability.parquet")
query1 = f"""
SELECT *
FROM read_parquet('./data/tools.parquet')
WHERE request_time >= '{one_months_ago}'
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got last one month data from tools.parquet")
con.close()
return df1, df2
def get_all_data():
"""
Get all data from the tools.parquet, tools_accuracy and trades parquet files
"""
logger.info("Getting all data")
con = duckdb.connect(":memory:")
# Query to fetch invalid trades data
query4 = f"""
SELECT *
FROM read_parquet('./data/invalid_trades.parquet')
"""
df4 = con.execute(query4).fetchdf()
# Query to fetch tools accuracy data
query3 = f"""
SELECT *
FROM read_csv('./data/tools_accuracy.csv')
"""
df3 = con.execute(query3).fetchdf()
# Query to fetch data from all_trades_profitability.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got all data from all_trades_profitability.parquet")
query1 = f"""
SELECT *
FROM read_parquet('./data/tools.parquet')
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got all data from tools.parquet")
con.close()
return df1, df2, df3, df4
def prepare_data():
"""
Prepare the data for the dashboard
"""
tools_df, trades_df, tools_accuracy_info, invalid_trades = get_all_data()
print(trades_df.info())
tools_df["request_time"] = pd.to_datetime(tools_df["request_time"])
trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
trades_df = prepare_trades(trades_df)
tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
print("weighted accuracy info")
print(tools_accuracy_info.head())
invalid_trades["creation_timestamp"] = pd.to_datetime(
invalid_trades["creation_timestamp"]
)
invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date
return tools_df, trades_df, tools_accuracy_info, invalid_trades
tools_df, trades_df, tools_accuracy_info, invalid_trades = prepare_data()
demo = gr.Blocks()
error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS)
error_overall_df = get_error_data_overall(error_df=error_df)
winning_rate_df = get_tool_winning_rate(tools_df=tools_df, inc_tools=INC_TOOLS)
winning_rate_overall_df = get_overall_winning_rate(wins_df=winning_rate_df)
trades_count_df = get_overall_trades(trades_df=trades_df)
trades_winning_rate_df = get_overall_winning_trades(trades_df=trades_df)
trades_by_market = get_overall_by_market_trades(trades_df=trades_df)
winning_trades_by_market = get_overall_winning_by_market_trades(trades_df=trades_df)
with demo:
gr.HTML("<h1>Olas Predict Actual Performance</h1>")
gr.Markdown(
"This app shows the actual performance of Olas Predict tools on the live market."
)
with gr.Tabs():
with gr.TabItem("🔥Trades Dashboard"):
with gr.Row():
gr.Markdown("# Trend of weekly trades")
with gr.Row():
with gr.Column(min_width=350):
qs_trades_by_week = plot_trades_per_market_by_week(
trades_df=trades_by_market, market_type="quickstart"
)
with gr.Column(min_width=350):
pearl_trades_by_week = plot_trades_per_market_by_week(
trades_df=trades_by_market, market_type="pearl"
)
with gr.Column(min_width=350):
all_trades_by_week = plot_trades_per_market_by_week(
trades_df=trades_by_market, market_type="all"
)
with gr.Row():
gr.Markdown("# Percentage of winning trades per week")
with gr.Row():
with gr.Column(min_width=350):
qs_wtrades_by_week = plot_winning_trades_per_market_by_week(
trades_df=winning_trades_by_market, market_type="quickstart"
)
with gr.Column(min_width=350):
# gr.Markdown("# From Pearl market creator")
pearl_wtrades_by_week = plot_winning_trades_per_market_by_week(
trades_df=winning_trades_by_market, market_type="pearl"
)
with gr.Column(min_width=350):
all_wtrades_by_week = plot_winning_trades_per_market_by_week(
trades_df=trades_winning_rate_df, market_type="all"
)
with gr.Row():
gr.Markdown("# ⚖️ Trading metrics")
with gr.Row():
trade_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=[
"mech calls",
"collateral amount",
"earnings",
"net earnings",
"ROI",
],
value="mech calls",
)
with gr.Row():
trade_details_plot = plot_trade_details(
trade_detail="mech calls", trades_df=trades_df
)
def update_trade_details(trade_detail):
return plot_trade_details(
trade_detail=trade_detail, trades_df=trades_df
)
trade_details_selector.change(
update_trade_details,
inputs=trade_details_selector,
outputs=trade_details_plot,
)
with gr.Row():
trade_details_selector
with gr.Row():
trade_details_plot
with gr.TabItem("🚀 Tool Winning Dashboard"):
with gr.Row():
gr.Markdown("# All tools winning performance")
with gr.Row():
winning_selector = gr.Dropdown(
label="Select the tool metric",
choices=["losses", "wins", "total_request", "win_perc"],
value="win_perc",
)
with gr.Row():
winning_plot = plot_tool_winnings_overall(
wins_df=winning_rate_overall_df, winning_selector="win_perc"
)
def update_tool_winnings_overall_plot(winning_selector):
return plot_tool_winnings_overall(
wins_df=winning_rate_overall_df, winning_selector=winning_selector
)
winning_selector.change(
update_tool_winnings_overall_plot,
inputs=winning_selector,
outputs=winning_plot,
)
with gr.Row():
winning_selector
with gr.Row():
winning_plot
with gr.Row():
gr.Markdown("# Winning performance by each tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
)
with gr.Row():
tool_winnings_by_tool_plot = plot_tool_winnings_by_tool(
wins_df=winning_rate_df, tool=INC_TOOLS[0]
)
def update_tool_winnings_by_tool_plot(tool):
return plot_tool_winnings_by_tool(wins_df=winning_rate_df, tool=tool)
sel_tool.change(
update_tool_winnings_by_tool_plot,
inputs=sel_tool,
outputs=tool_winnings_by_tool_plot,
)
with gr.Row():
sel_tool
with gr.Row():
tool_winnings_by_tool_plot
with gr.TabItem("🎯 Tool Accuracy Dashboard"):
with gr.Row():
gr.Markdown("# Tools accuracy ranking")
with gr.Row():
gr.Markdown(
"The data used for this metric is from the past two months. This accuracy is computed based on right answers from the total requests received."
)
with gr.Row():
_ = plot_tools_accuracy_graph(tools_accuracy_info)
with gr.Row():
gr.Markdown("# Weighted accuracy ranking per tool")
with gr.Row():
gr.Markdown(
"This metric is an approximation to the real metric used by the trader since some parameters are only dynamically generated."
)
with gr.Row():
gr.Markdown(
"The data used for this metric is from the past two months. This metric is computed using both the tool accuracy and the volume of requests received by the tool"
)
with gr.Row():
_ = plot_tools_weighted_accuracy_graph(tools_accuracy_info)
with gr.TabItem("⛔ Invalid Markets Dashboard"):
with gr.Row():
gr.Markdown("# Daily distribution of invalid trades")
with gr.Row():
daily_trades = plot_daily_dist_invalid_trades(invalid_trades)
# with gr.Row():
# gr.Markdown("# Ratio of invalid trades per market")
# with gr.Row():
# plot_ratio_invalid_trades_per_market(invalid_trades)
with gr.Row():
gr.Markdown("# Top markets with invalid trades")
with gr.Row():
top_invalid_markets = plot_top_invalid_markets(invalid_trades)
with gr.Row():
gr.Markdown("# Daily distribution of invalid markets")
with gr.Row():
invalid_markets = plot_daily_nr_invalid_markets(invalid_trades)
with gr.TabItem("🏥 Tool Error Dashboard"):
with gr.Row():
gr.Markdown("# All tools errors")
with gr.Row():
error_overall_plot = plot_error_data(error_all_df=error_overall_df)
with gr.Row():
gr.Markdown("# Error percentage per tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
)
with gr.Row():
tool_error_plot = plot_tool_error_data(
error_df=error_df, tool=INC_TOOLS[0]
)
def update_tool_error_plot(tool):
return plot_tool_error_data(error_df=error_df, tool=tool)
sel_tool.change(
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
gr.Markdown("# Tools distribution of errors per week")
with gr.Row():
choices = error_overall_df["request_month_year_week"].unique().tolist()
# sort the choices by the latest week to be on the top
choices = sorted(choices)
sel_week = gr.Dropdown(
label="Select a week", choices=choices, value=choices[-1]
)
with gr.Row():
week_error_plot = plot_week_error_data(
error_df=error_df, week=choices[-1]
)
def update_week_error_plot(selected_week):
return plot_week_error_data(error_df=error_df, week=selected_week)
sel_tool.change(
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
)
sel_week.change(
update_week_error_plot, inputs=sel_week, outputs=week_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
sel_week
with gr.Row():
week_error_plot
with gr.TabItem("ℹ️ About"):
with gr.Accordion("About Olas Predict"):
gr.Markdown(about_olas_predict)
with gr.Accordion("About this dashboard"):
gr.Markdown(about_this_dashboard)
demo.queue(default_concurrency_limit=40).launch()
|