rosacastillo's picture
updating week format starting on Monday, new staking contracts and new weekly data
285f2a6
raw
history blame
9.1 kB
import sys
import pickle
import gc
import time
import requests
from functools import partial
from string import Template
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
from collections import defaultdict
from tqdm import tqdm
from web3 import Web3
from typing import Any, Optional
from web3.types import BlockParams
from utils import (
JSON_DATA_DIR,
DATA_DIR,
SUBGRAPH_API_KEY,
to_content,
SUBGRAPH_URL,
HIST_DIR,
TMP_DIR,
)
from queries import conditional_tokens_gc_user_query, omen_xdai_trades_query
import pandas as pd
REDUCE_FACTOR = 0.25
SLEEP = 0.5
QUERY_BATCH_SIZE = 1000
FPMM_QS_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec"
FPMM_PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557"
LATEST_BLOCK: Optional[int] = None
LATEST_BLOCK_NAME: BlockParams = "latest"
BLOCK_DATA_NUMBER = "number"
BLOCKS_CHUNK_SIZE = 10_000
N_IPFS_RETRIES = 4
N_RPC_RETRIES = 100
RPC_POLL_INTERVAL = 0.05
SUBGRAPH_POLL_INTERVAL = 0.05
IPFS_POLL_INTERVAL = 0.2 # 5 calls per second
OMEN_SUBGRAPH_URL = Template(
"""https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
)
headers = {
"Accept": "application/json, multipart/mixed",
"Content-Type": "application/json",
}
def parse_args() -> str:
"""Parse the arguments and return the RPC."""
if len(sys.argv) != 2:
raise ValueError("Expected the RPC as a positional argument.")
return sys.argv[1]
def read_abi(abi_path: str) -> str:
"""Read and return the wxDAI contract's ABI."""
with open(abi_path) as abi_file:
return abi_file.read()
def update_block_request_map(block_request_id_map: dict) -> None:
print("Saving block request id map info")
with open(JSON_DATA_DIR / "block_request_id_map.pickle", "wb") as handle:
pickle.dump(block_request_id_map, handle, protocol=pickle.HIGHEST_PROTOCOL)
def reduce_window(contract_instance, event, from_block, batch_size, latest_block):
"""Dynamically reduce the batch size window."""
keep_fraction = 1 - REDUCE_FACTOR
events_filter = contract_instance.events[event].build_filter()
events_filter.fromBlock = from_block
batch_size = int(batch_size * keep_fraction)
events_filter.toBlock = min(from_block + batch_size, latest_block)
tqdm.write(f"RPC timed out! Resizing batch size to {batch_size}.")
time.sleep(SLEEP)
return events_filter, batch_size
def block_number_to_timestamp(block_number: int, web3: Web3) -> str:
"""Convert a block number to a timestamp."""
block = web3.eth.get_block(block_number)
timestamp = datetime.utcfromtimestamp(block["timestamp"])
try:
timestamp_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
timestamp = datetime.strptime(timestamp_str, "%Y-%m-%dT%H:%M:%S.%f")
except Exception as e:
timestamp = datetime.utcfromtimestamp(block["timestamp"])
return timestamp.strftime("%Y-%m-%d %H:%M:%S")
def parallelize_timestamp_conversion(df: pd.DataFrame, function: callable) -> list:
"""Parallelize the timestamp conversion."""
block_numbers = df["request_block"].tolist()
with ThreadPoolExecutor(max_workers=10) as executor:
results = list(
tqdm(executor.map(function, block_numbers), total=len(block_numbers))
)
return results
def updating_timestamps(rpc: str, tools_filename: str):
web3 = Web3(Web3.HTTPProvider(rpc))
tools = pd.read_parquet(TMP_DIR / tools_filename)
# Convert block number to timestamp
print("Converting block number to timestamp")
t_map = pickle.load(open(TMP_DIR / "t_map.pkl", "rb"))
tools["request_time"] = tools["request_block"].map(t_map)
no_data = tools["request_time"].isna().sum()
print(f"Total rows with no request time info = {no_data}")
# Identify tools with missing request_time and fill them
missing_time_indices = tools[tools["request_time"].isna()].index
if not missing_time_indices.empty:
partial_block_number_to_timestamp = partial(
block_number_to_timestamp, web3=web3
)
missing_timestamps = parallelize_timestamp_conversion(
tools.loc[missing_time_indices], partial_block_number_to_timestamp
)
# Update the original DataFrame with the missing timestamps
for i, timestamp in zip(missing_time_indices, missing_timestamps):
tools.at[i, "request_time"] = timestamp
tools["request_month_year"] = pd.to_datetime(tools["request_time"]).dt.strftime(
"%Y-%m"
)
tools["request_month_year_week"] = (
pd.to_datetime(tools["request_time"])
.dt.to_period("W")
.dt.start_time.dt.strftime("%b-%d-%Y")
)
# Save the tools data after the updates on the content
print(f"Updating file {tools_filename} with timestamps")
tools.to_parquet(TMP_DIR / tools_filename, index=False)
# Update t_map with new timestamps
new_timestamps = (
tools[["request_block", "request_time"]]
.dropna()
.set_index("request_block")
.to_dict()["request_time"]
)
t_map.update(new_timestamps)
# filtering old timestamps
cutoff_date = datetime(2024, 9, 9)
filtered_map = {
k: v
for k, v in t_map.items()
if datetime.strptime(v, "%Y-%m-%d %H:%M:%S") < cutoff_date
}
with open(DATA_DIR / "t_map.pkl", "wb") as f:
pickle.dump(filtered_map, f)
# clean and release all memory
del tools
del t_map
gc.collect()
def query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:
"""Query the subgraph."""
subgraph = SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}}
userPositions_id_gt = ""
while True:
query = conditional_tokens_gc_user_query.substitute(
id=creator.lower(),
first=QUERY_BATCH_SIZE,
userPositions_id_gt=userPositions_id_gt,
)
content_json = {"query": query}
# print("sending query to subgraph")
res = requests.post(subgraph, headers=headers, json=content_json)
result_json = res.json()
# print(f"result = {result_json}")
user_data = result_json.get("data", {}).get("user", {})
if not user_data:
break
user_positions = user_data.get("userPositions", [])
if user_positions:
all_results["data"]["user"]["userPositions"].extend(user_positions)
userPositions_id_gt = user_positions[len(user_positions) - 1]["id"]
else:
break
if len(all_results["data"]["user"]["userPositions"]) == 0:
return {"data": {"user": None}}
return all_results
def query_omen_xdai_subgraph(
trader_category: str,
from_timestamp: float,
to_timestamp: float,
fpmm_from_timestamp: float,
fpmm_to_timestamp: float,
) -> dict[str, Any]:
"""Query the subgraph."""
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
print(f"omen_subgraph = {omen_subgraph}")
grouped_results = defaultdict(list)
id_gt = ""
if trader_category == "quickstart":
creator_id = FPMM_QS_CREATOR.lower()
else: # pearl
creator_id = FPMM_PEARL_CREATOR.lower()
while True:
query = omen_xdai_trades_query.substitute(
fpmm_creator=creator_id,
creationTimestamp_gte=int(from_timestamp),
creationTimestamp_lte=int(to_timestamp),
fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),
fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),
first=QUERY_BATCH_SIZE,
id_gt=id_gt,
)
print(f"omen query={query}")
content_json = to_content(query)
res = requests.post(omen_subgraph, headers=headers, json=content_json)
result_json = res.json()
# print(f"result = {result_json}")
user_trades = result_json.get("data", {}).get("fpmmTrades", [])
if not user_trades:
break
for trade in user_trades:
fpmm_id = trade.get("fpmm", {}).get("id")
grouped_results[fpmm_id].append(trade)
id_gt = user_trades[len(user_trades) - 1]["id"]
all_results = {
"data": {
"fpmmTrades": [
trade
for trades_list in grouped_results.values()
for trade in trades_list
]
}
}
return all_results
# def get_earliest_block(event_name: MechEventName) -> int:
# """Get the earliest block number to use when filtering for events."""
# filename = gen_event_filename(event_name)
# if not os.path.exists(DATA_DIR / filename):
# return 0
# df = pd.read_parquet(DATA_DIR / filename)
# block_field = f"{event_name.value.lower()}_{BLOCK_FIELD}"
# earliest_block = int(df[block_field].max())
# # clean and release all memory
# del df
# gc.collect()
# return earliest_block