rosacastillo's picture
removed dependency with tools.parquet and new mech calls computation timestamps based
278fab8
raw
history blame
4.37 kB
import pandas as pd
import gradio as gr
from typing import List
import plotly.express as px
from tabs.tool_win import sort_key
HEIGHT = 600
WIDTH = 1000
def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the error data for the given tools and calculates the error percentage."""
error_total = (
error_df.groupby(["request_month_year_week", "market_creator"], sort=False)
.agg({"total_requests": "sum", "1": "sum", "0": "sum"})
.reset_index()
)
error_total["error_perc"] = (error_total["1"] / error_total["total_requests"]) * 100
error_total.columns = error_total.columns.astype(str)
error_total["error_perc"] = error_total["error_perc"].apply(lambda x: round(x, 4))
return error_total
def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
error_all_df["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
error_all_df["request_month_year_week"] = pd.Categorical(
error_all_df["request_month_year_week"],
categories=sorted_categories,
ordered=True,
)
# Sort the DataFrame based on the new categorical column
error_all_df = error_all_df.sort_values("request_month_year_week")
fig = px.bar(
error_all_df,
x="request_month_year_week",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Error Percentage",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot:
error_tool = error_df[error_df["tool"] == tool]
error_tool.columns = error_tool.columns.astype(str)
error_tool["error_perc"] = error_tool["error_perc"].apply(lambda x: round(x, 4))
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
error_tool["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
error_tool["request_month_year_week"] = pd.Categorical(
error_tool["request_month_year_week"],
categories=sorted_categories,
ordered=True,
)
# Sort the DataFrame based on the new categorical column
error_tool = error_tool.sort_values("request_month_year_week")
fig = px.bar(
error_tool,
x="request_month_year_week",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Error Percentage %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
error_week = error_df[error_df["request_month_year_week"] == week]
error_week.columns = error_week.columns.astype(str)
error_week["error_perc"] = error_week["error_perc"].apply(lambda x: round(x, 4))
fig = px.bar(
error_week,
x="tool",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
},
)
fig.update_layout(
xaxis_title="Tool",
yaxis_title="Error Percentage %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)